43 research outputs found

    Impact of interventions to reduce sugar-sweetened beverage intake in children and adults: a protocol for a systematic review and meta-analysis

    Get PDF
    Background: Sugar-sweetened beverages (SSBs) have been stressed as relevant targets of public health interventions considering the negative outcomes derived from their excessive intake. Though the evidence from published literature grows to support a cause-and-effect association of SSBs with obesity and other diseases, little is known on the effectiveness that strategies alone or as part of multi-component programmes have had to influence this particular dietary behaviour across all ages. Therefore, this review and meta-analysis aim to evaluate the effect that interventions have had to decrease their consumption or increase water intake in children and adults so as to guide the design of future programmes and inform policy making. Methods: Included studies in this review will be randomised controlled trials and quasi-experimental interventions (with a control group) that have reported baseline and post-intervention intakes of SSBs or water and that have been published from 1990 in any language. A thorough search will be performed in MEDLINE, EMBASE, Scopus, Web of Science, Cochrane's central register of controlled trials, and the Global Health Library. Two independent reviewers will conduct initial screening of potentially included articles and will later extract data to analyse domains of intervention design and delivery (with emphasis on behaviour change techniques used as rationale), as well as results in changes on consumption patterns and behavioural determinants. Internal and external validity of each study will also be appraised. A meta-analysis will be performed if a sufficient number of studies are available, and if not, a narrative review will be conducted instead. Discussion: The results from this review aim to strengthen public health initiatives tackling obesity through improvements in non-alcoholic drinking patterns. As a subject of growing attention globally, this review will help determine which strategies available are the most effective in different contexts. Knowledge gained from this work will also aid resource allocation in future research and government agendas

    Homeostatic regulation of the endoneurial microenvironment during development, aging and in response to trauma, disease and toxic insult

    Get PDF
    The endoneurial microenvironment, delimited by the endothelium of endoneurial vessels and a multi-layered ensheathing perineurium, is a specialized milieu intérieur within which axons, associated Schwann cells and other resident cells of peripheral nerves function. The endothelium and perineurium restricts as well as regulates exchange of material between the endoneurial microenvironment and the surrounding extracellular space and thus is more appropriately described as a blood–nerve interface (BNI) rather than a blood–nerve barrier (BNB). Input to and output from the endoneurial microenvironment occurs via blood–nerve exchange and convective endoneurial fluid flow driven by a proximo-distal hydrostatic pressure gradient. The independent regulation of the endothelial and perineurial components of the BNI during development, aging and in response to trauma is consistent with homeostatic regulation of the endoneurial microenvironment. Pathophysiological alterations of the endoneurium in experimental allergic neuritis (EAN), and diabetic and lead neuropathy are considered to be perturbations of endoneurial homeostasis. The interactions of Schwann cells, axons, macrophages, and mast cells via cell–cell and cell–matrix signaling regulate the permeability of this interface. A greater knowledge of the dynamic nature of tight junctions and the factors that induce and/or modulate these key elements of the BNI will increase our understanding of peripheral nerve disorders as well as stimulate the development of therapeutic strategies to treat these disorders

    Pan-cancer analysis of whole genomes

    Get PDF
    Cancer is driven by genetic change, and the advent of massively parallel sequencing has enabled systematic documentation of this variation at the whole-genome scale(1-3). Here we report the integrative analysis of 2,658 whole-cancer genomes and their matching normal tissues across 38 tumour types from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). We describe the generation of the PCAWG resource, facilitated by international data sharing using compute clouds. On average, cancer genomes contained 4-5 driver mutations when combining coding and non-coding genomic elements; however, in around 5% of cases no drivers were identified, suggesting that cancer driver discovery is not yet complete. Chromothripsis, in which many clustered structural variants arise in a single catastrophic event, is frequently an early event in tumour evolution; in acral melanoma, for example, these events precede most somatic point mutations and affect several cancer-associated genes simultaneously. Cancers with abnormal telomere maintenance often originate from tissues with low replicative activity and show several mechanisms of preventing telomere attrition to critical levels. Common and rare germline variants affect patterns of somatic mutation, including point mutations, structural variants and somatic retrotransposition. A collection of papers from the PCAWG Consortium describes non-coding mutations that drive cancer beyond those in the TERT promoter(4); identifies new signatures of mutational processes that cause base substitutions, small insertions and deletions and structural variation(5,6); analyses timings and patterns of tumour evolution(7); describes the diverse transcriptional consequences of somatic mutation on splicing, expression levels, fusion genes and promoter activity(8,9); and evaluates a range of more-specialized features of cancer genomes(8,10-18).Peer reviewe

    Wellbeing and arthritis incidence:The survey of health, ageing and retirement in Europe

    Get PDF
    BACKGROUND: A number of studies provide evidence for an association between psychosocial factors and risk of incident arthritis. Current evidence is largely limited to the examination of negative factors such as perceived stress, but positive factors such as subjective wellbeing may also play a role. PURPOSE: The purpose of the current study was to investigate whether people with higher subjective wellbeing have a lower risk of developing arthritis. METHODS: We used Cox proportional hazards regression to examine the prospective relationship between wellbeing (measured using the CASP-12) and incidence of arthritis over a 9-year period. The sample consisted of 13,594 participants aged ≥50 years from the Survey of Health, Ageing and Retirement in Europe. RESULTS: There was a significant association between greater wellbeing and reduced incident arthritis that was stronger at younger ages. In sex-adjusted analyses, for a standard deviation increase in CASP-12 score, the hazard ratios (95 % confidence intervals) for incident arthritis in people aged <65 and ≥65 years were 0.73 (0.69–0.77) and 0.80 (0.77–0.85), respectively. After further adjustment for other established risk factors, these associations were attenuated but remained significant in both age groups: the fully adjusted hazard ratios were 0.82 (0.77–0.87) and 0.88 (0.82–0.95), respectively. CONCLUSIONS: These results provide evidence for an association between greater wellbeing and reduced risk of incident arthritis and, more generally, support the theory that psychosocial factors are implicated in the aetiology of this disease. Future research needs to delineate the mechanisms underlying the association between wellbeing and arthritis risk. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s12160-015-9764-6) contains supplementary material, which is available to authorized users

    Modelling Transcapillary Transport of Fluid and Proteins in Hemodialysis Patients

    No full text
    The kinetics of protein transport to and from the vascular compartment play a major role in the determination of fluid balance and plasma refilling during hemodialysis (HD) sessions. In this study we propose a whole-body mathematical model describing water and protein shifts across the capillary membrane during HD and compare its output to clinical data while evaluating the impact of choosing specific values for selected parameters.The model follows a two-compartment structure (vascular and interstitial space) and is based on balance equations of protein mass and water volume in each compartment. The capillary membrane was described according to the three-pore theory. Two transport parameters, the fractional contribution of large pores (αLP) and the total hydraulic conductivity (LpS) of the capillary membrane, were estimated from patient data. Changes in the intensity and direction of individual fluid and solute flows through each part of the transport system were analyzed in relation to the choice of different values of small pores radius and fractional conductivity, lymphatic sensitivity to hydraulic pressure, and steady-state interstitial-to-plasma protein concentration ratio.The estimated values of LpS and αLP were respectively 10.0 ± 8.4 mL/min/mmHg (mean ± standard deviation) and 0.062 ± 0.041. The model was able to predict with good accuracy the profiles of plasma volume and serum total protein concentration in most of the patients (average root-mean-square deviation < 2% of the measured value).The applied model provides a mechanistic interpretation of fluid transport processes induced by ultrafiltration during HD, using a minimum of tuned parameters and assumptions. The simulated values of individual flows through each kind of pore and lymphatic absorption rate yielded by the model may suggest answers to unsolved questions on the relative impact of these not-measurable quantities on total vascular refilling and fluid balance
    corecore