28 research outputs found

    Pan-cancer analysis of whole genomes

    Get PDF
    Cancer is driven by genetic change, and the advent of massively parallel sequencing has enabled systematic documentation of this variation at the whole-genome scale(1-3). Here we report the integrative analysis of 2,658 whole-cancer genomes and their matching normal tissues across 38 tumour types from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). We describe the generation of the PCAWG resource, facilitated by international data sharing using compute clouds. On average, cancer genomes contained 4-5 driver mutations when combining coding and non-coding genomic elements; however, in around 5% of cases no drivers were identified, suggesting that cancer driver discovery is not yet complete. Chromothripsis, in which many clustered structural variants arise in a single catastrophic event, is frequently an early event in tumour evolution; in acral melanoma, for example, these events precede most somatic point mutations and affect several cancer-associated genes simultaneously. Cancers with abnormal telomere maintenance often originate from tissues with low replicative activity and show several mechanisms of preventing telomere attrition to critical levels. Common and rare germline variants affect patterns of somatic mutation, including point mutations, structural variants and somatic retrotransposition. A collection of papers from the PCAWG Consortium describes non-coding mutations that drive cancer beyond those in the TERT promoter(4); identifies new signatures of mutational processes that cause base substitutions, small insertions and deletions and structural variation(5,6); analyses timings and patterns of tumour evolution(7); describes the diverse transcriptional consequences of somatic mutation on splicing, expression levels, fusion genes and promoter activity(8,9); and evaluates a range of more-specialized features of cancer genomes(8,10-18).Peer reviewe

    Effect of bambara groundnut supplementation on the physicochemical properties of rice flour and crackers

    No full text
    This study evaluated the effect of bambara groundnut supplementation on the physicochemical properties of local rice flour and baked crackers. Bulk and true density, porosity, water absorption index, oil absorption capacity, pasting properties by RVA, morphological appearance by SEM, color by calorimetry, and textural properties by TA.XT2 analysis of wheat and two formulations of rice-legume flours and crackers were studied. Moisture (10.94%) and carbohydrate (77.42%) levels were significantly greater in wheat flour than the rice-legume flours, while the reverse was true for fat and ash. Also rice-legume flours had significantly greater water and oil absorption capacity and lower water solubility compared to wheat flour. Compared to wheat crackers, rice-legume crackers had greater fat and ash, 20.51 and 3.57%, respectively, while moisture was significantly lower in the rice-legume crackers by 41 to 58%. Rice legume crackers were significantly harder and had significantly increased spread ratio. The results obtained from the development of locally grown rice and underutilized legume bambara groundnut showed great promise in physicochemical and functional properties and may be a good replacement for wheat flour to serve as a gluten-free product
    corecore