86 research outputs found
Hospital outpatient perceptions of the physical environment of waiting areas: the role of patient characteristics on atmospherics in one academic medical center
<p>Abstract</p> <p>Background</p> <p>This study examines hospital outpatient perceptions of the physical environment of the outpatient waiting areas in one medical center. The relationship of patient characteristics and their perceptions and needs for the outpatient waiting areas are also examined.</p> <p>Method</p> <p>The examined medical center consists of five main buildings which house seventeen primary waiting areas for the outpatient clinics of nine medical specialties: 1) Internal Medicine; 2) Surgery; 3) Ophthalmology; 4) Obstetrics-Gynecology and Pediatrics; 5) Chinese Medicine; 6) Otolaryngology; 7) Orthopedics; 8) Family Medicine; and 9) Dermatology. A 15-item structured questionnaire was developed to rate patient satisfaction covering the four dimensions of the physical environments of the outpatient waiting areas: 1) visual environment; 2) hearing environment; 3) body contact environment; and 4) cleanliness. The survey was conducted between November 28, 2005 and December 8, 2005. A total of 680 outpatients responded. Descriptive, univariate, and multiple regression analyses were applied in this study.</p> <p>Results</p> <p>All of the 15 items were ranked as relatively high with a range from 3.362 to 4.010, with a neutral score of 3. Using a principal component analysis' summated scores of four constructed dimensions of patient satisfaction with the physical environments (i.e. visual environment, hearing environment, body contact environment, and cleanliness), multiple regression analyses revealed that patient satisfaction with the physical environment of outpatient waiting areas was associated with gender, age, visiting frequency, and visiting time.</p> <p>Conclusion</p> <p>Patients' socio-demographics and context backgrounds demonstrated to have effects on their satisfaction with the physical environment of outpatient waiting areas. In addition to noticing the overall rankings for less satisfactory items, what should receive further attention is the consideration of the patients' personal characteristics when redesigning more comfortable and customized physical environments of waiting areas.</p
Analysis of nucleoside-binding proteins by ligand-specific elution from dye resin: application to Mycobacterium tuberculosis aldehyde dehydrogenases
We show that Cibacron Blue F3GA dye resin chromatography can be used to identify ligands that specifically interact with proteins from Mycobacterium tuberculosis, and that the identification of these ligands can facilitate structure determination by enhancing the quality of crystals. Four native Mtb proteins of the aldehyde dehydrogenase (ALDH) family were previously shown to be specifically eluted from a Cibacron Blue F3GA dye resin with nucleosides. In this study we characterized the nucleoside-binding specificity of one of these ALDH isozymes (recombinant Mtb Rv0223c) and compared these biochemical results with co-crystallization experiments with different Rv0223c-nucleoside pairings. We found that the strongly interacting ligands (NAD and NADH) aided formation of high-quality crystals, permitting solution of the first Mtb ALDH (Rv0223c) structure. Other nucleoside ligands (AMP, FAD, adenosine, GTP and NADP) exhibited weaker binding to Rv0223c, and produced co-crystals diffracting to lower resolution. Difference electron density maps based on crystals of Rv0223c with various nucleoside ligands show most share the binding site where the natural ligand NAD binds. From the high degree of similarity of sequence and structure compared to human mitochondrial ALDH-2 (BLAST Z-score = 53.5 and RMSD = 1.5 Å), Rv0223c appears to belong to the ALDH-2 class. An altered oligomerization domain in the Rv0223c structure seems to keep this protein as monomer whereas native human ALDH-2 is a multimer
Heterogeneity of Microglial Activation in the Innate Immune Response in the Brain
The immune response in the brain has been widely investigated and while many studies have focused on the proinflammatory cytotoxic response, the brain’s innate immune system demonstrates significant heterogeneity. Microglia, like other tissue macrophages, participate in repair and resolution processes after infection or injury to restore normal tissue homeostasis. This review examines the mechanisms that lead to reduction of self-toxicity and to repair and restructuring of the damaged extracellular matrix in the brain. Part of the resolution process involves switching macrophage functional activation to include reduction of proinflammatory mediators, increased production and release of anti-inflammatory cytokines, and production of cytoactive factors involved in repair and reconstruction of the damaged brain. Two partially overlapping and complimentary functional macrophage states have been identified and are called alternative activation and acquired deactivation. The immunosuppressive and repair processes of each of these states and how alternative activation and acquired deactivation participate in chronic neuroinflammation in the brain are discussed
DNA methylation and methyl-CpG binding proteins: developmental requirements and function
DNA methylation is a major epigenetic modification in the genomes of higher eukaryotes. In vertebrates, DNA methylation occurs predominantly on the CpG dinucleotide, and approximately 60% to 90% of these dinucleotides are modified. Distinct DNA methylation patterns, which can vary between different tissues and developmental stages, exist on specific loci. Sites of DNA methylation are occupied by various proteins, including methyl-CpG binding domain (MBD) proteins which recruit the enzymatic machinery to establish silent chromatin. Mutations in the MBD family member MeCP2 are the cause of Rett syndrome, a severe neurodevelopmental disorder, whereas other MBDs are known to bind sites of hypermethylation in human cancer cell lines. Here, we review the advances in our understanding of the function of DNA methylation, DNA methyltransferases, and methyl-CpG binding proteins in vertebrate embryonic development. MBDs function in transcriptional repression and long-range interactions in chromatin and also appear to play a role in genomic stability, neural signaling, and transcriptional activation. DNA methylation makes an essential and versatile epigenetic contribution to genome integrity and function
Iron Behaving Badly: Inappropriate Iron Chelation as a Major Contributor to the Aetiology of Vascular and Other Progressive Inflammatory and Degenerative Diseases
The production of peroxide and superoxide is an inevitable consequence of
aerobic metabolism, and while these particular "reactive oxygen species" (ROSs)
can exhibit a number of biological effects, they are not of themselves
excessively reactive and thus they are not especially damaging at physiological
concentrations. However, their reactions with poorly liganded iron species can
lead to the catalytic production of the very reactive and dangerous hydroxyl
radical, which is exceptionally damaging, and a major cause of chronic
inflammation. We review the considerable and wide-ranging evidence for the
involvement of this combination of (su)peroxide and poorly liganded iron in a
large number of physiological and indeed pathological processes and
inflammatory disorders, especially those involving the progressive degradation
of cellular and organismal performance. These diseases share a great many
similarities and thus might be considered to have a common cause (i.e.
iron-catalysed free radical and especially hydroxyl radical generation). The
studies reviewed include those focused on a series of cardiovascular, metabolic
and neurological diseases, where iron can be found at the sites of plaques and
lesions, as well as studies showing the significance of iron to aging and
longevity. The effective chelation of iron by natural or synthetic ligands is
thus of major physiological (and potentially therapeutic) importance. As
systems properties, we need to recognise that physiological observables have
multiple molecular causes, and studying them in isolation leads to inconsistent
patterns of apparent causality when it is the simultaneous combination of
multiple factors that is responsible. This explains, for instance, the
decidedly mixed effects of antioxidants that have been observed, etc...Comment: 159 pages, including 9 Figs and 2184 reference
Pan-cancer analysis of whole genomes
Cancer is driven by genetic change, and the advent of massively parallel sequencing has enabled systematic documentation of this variation at the whole-genome scale(1-3). Here we report the integrative analysis of 2,658 whole-cancer genomes and their matching normal tissues across 38 tumour types from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). We describe the generation of the PCAWG resource, facilitated by international data sharing using compute clouds. On average, cancer genomes contained 4-5 driver mutations when combining coding and non-coding genomic elements; however, in around 5% of cases no drivers were identified, suggesting that cancer driver discovery is not yet complete. Chromothripsis, in which many clustered structural variants arise in a single catastrophic event, is frequently an early event in tumour evolution; in acral melanoma, for example, these events precede most somatic point mutations and affect several cancer-associated genes simultaneously. Cancers with abnormal telomere maintenance often originate from tissues with low replicative activity and show several mechanisms of preventing telomere attrition to critical levels. Common and rare germline variants affect patterns of somatic mutation, including point mutations, structural variants and somatic retrotransposition. A collection of papers from the PCAWG Consortium describes non-coding mutations that drive cancer beyond those in the TERT promoter(4); identifies new signatures of mutational processes that cause base substitutions, small insertions and deletions and structural variation(5,6); analyses timings and patterns of tumour evolution(7); describes the diverse transcriptional consequences of somatic mutation on splicing, expression levels, fusion genes and promoter activity(8,9); and evaluates a range of more-specialized features of cancer genomes(8,10-18).Peer reviewe
Comprehensive molecular characterization of the hippo signaling pathway in cancer
Hippo signaling has been recognized as a key tumor suppressor pathway. Here, we perform a comprehensive molecular characterization of 19 Hippo core genes in 9,125 tumor samples across 33 cancer types using multidimensional “omic” data from The Cancer Genome Atlas. We identify somatic drivers among Hippo genes and the related microRNA (miRNA) regulators, and using functional genomic approaches, we experimentally characterize YAP and TAZ mutation effects and miR-590 and miR-200a regulation for TAZ. Hippo pathway activity is best characterized by a YAP/TAZ transcriptional target signature of 22 genes, which shows robust prognostic power across cancer types. Our elastic-net integrated modeling further reveals cancer-type-specific pathway regulators and associated cancer drivers. Our results highlight the importance of Hippo signaling in squamous cell cancers, characterized by frequent amplification of YAP/TAZ, high expression heterogeneity, and significant prognostic patterns. This study represents a systems-biology approach to characterizing key cancer signaling pathways in the post-genomic era
A primal-dual approximation algorithm for the Asymmetric Prize-Collecting TSP
International audienceWe present a primal-dual -approximation algorithm for the version of the asymmetric prize collecting traveling salesman problem, where the objective is to find a directed tour that visits a subset of vertices such that the length of the tour plus the sum of penalties associated with vertices not in the tour is as small as possible. The previous algorithm for the problem (V.H. Nguyen and T.T Nguyen in Int. J. Math. Oper. Res. 4(3):294–301, 2012) which is not combinatorial, is based on the Held-Karp relaxation and heuristic methods such as the Frieze et al.’s heuristic (Frieze et al. in Networks 12:23–39, 1982) or the recent Asadpour et al.’s heuristic for the ATSP (Asadpour et al. in 21st ACM-SIAM symposium on discrete algorithms, 2010). Depending on which of the two heuristics is used, it gives respectively and as an approximation ratio. Our algorithm achieves an approximation ratio of which is weaker than but represents the first combinatorial approximation algorithm for the Asymmetric Prize-Collecting TSP
Antimicrobial Resistance Patterns of Staphylococcus Aureus Isolated at a General Hospital in Vietnam Between 2014 and 2021
Nguyen Van An,1,* Le Ha long Hai,2,3,* Vu Huy Luong,4,5 Nguyen Thi Ha Vinh,5,6 Pham Quynh Hoa,7 Le Van Hung,5,7 Nguyen Thai Son,1 Le Thu Hong,1 Dinh Viet Hung,8 Hoang Trung Kien,9 Minh Nhat Le,10,11 Nguyen Hoang Viet,12 Duc Hoang Nguyen,13 Ngai Van Pham,14 Ta Ba Thang,15 Tran Viet Tien,16 Le Huy Hoang17 1Department of Microbiology, Military Hospital 103, Vietnam Military Medical University, Hanoi, Vietnam; 2Department of Clinical Microbiology and Parasitology, Faculty of Medical Technology, Hanoi Medical University, Hanoi, Vietnam; 3Department of Biochemistry, Hematology and Immunology, National Hospital of Dermatology and Venereology, Hanoi, Vietnam; 4Department of Laser and Skin Care, National hospital of Dermatology and Venereology, Hanoi, Vietnam; 5Department of Dermatology and Venereology, Hanoi Medical University, Hanoi, Vietnam; 6Department of General Planning, National hospital of Dermatology and Venereology, Hanoi, Vietnam; 7Department of Microbiology, Mycology and Parasitology, National hospital of Dermatology and Venereology, Hanoi, Vietnam; 8Department of Psychiatry, Military Medical 103, Vietnam Military Medical University, Hanoi, Vietnam; 9Department of Immunology, Vietnam Military Medical University, Hanoi, Vietnam; 10Tay Nguyen Institute of Science Research, Vietnam Academy of Science and Technology, VAST, Hanoi, Vietnam; 11Antimicrobial Resistance Research Center, National Institute of Infectious Disease, Tokyo, Japan; 12Molecular Pathology Department, Faculty of Medical Technology, Hanoi Medical University, Hanoi, Vietnam; 13Cardiovascular Laboratories, Methodist Hospital, Merrillville, Indiana, USA; 14Medical Testing Center, Medlatec Group, Hanoi, Vietnam; 15Respiratory Center, Military Hospital 103, Vietnam Military Medical University, Hanoi, Vietnam; 16Department of Infectious diseases, Military Hospital 103, Vietnam Medical Military University, Hanoi, Vietnam; 17Department of Bacteriology, National of Hygiene and Epidemiology, Hanoi, Vietnam*These authors contributed equally to this workCorrespondence: Le Huy Hoang, Department of Bacteriology, National of Hygiene and Epidemiology, Hanoi, 100000, Vietnam, Tel + 84 977 803 986, Email [email protected]: Staphylococcus aureus is a commensal bacteria species that can cause various illnesses, from mild skin infections to severe diseases, such as bacteremia. The distribution and antimicrobial resistance (AMR) pattern of S. aureus varies by population, time, geographic location, and hospital wards. In this study, we elucidated the epidemiology and AMR patterns of S. aureus isolated from a general hospital in Vietnam.Methods: This was a cross-sectional study. Data on all S. aureus infections from 2014 to 2021 were collected from the Microbiology department of Military Hospital 103, Vietnam. Only the first isolation from each kind of specimen from a particular patient was analyzed using the Cochran–Armitage and chi-square tests.Results: A total of 1130 individuals were diagnosed as S. aureus infection. Among them, 1087 strains were tested for AMR features. Most patients with S. aureus infection were in the age group of 41– 65 years (39.82%). S. aureus isolates were predominant in the surgery wards, and pus specimens were the most common source of isolates (50.62%). S. aureus was most resistant to azithromycin (82.28%), erythromycin (82.82%), and clindamycin (82.32%) and least resistant to teicoplanin (0.0%), tigecycline (0.16%), quinupristin-dalfopristin (0.43%), linezolid (0.62%), and vancomycin (2.92%). Methicillin-resistant S. aureus (MRSA) and multidrug-resistant (MDR) S. aureus were prevalent, accounting for 73.02% and 60.90% of the total strains respectively, and the strains isolated from the intensive care unit (ICU) had the highest percentage of multidrug resistance (77.78%) among the wards.Conclusion: These findings highlight the urgent need for continuous AMR surveillance and updated treatment guidelines, particularly considering high resistance in MRSA, MDR strains, and ICU isolates. Future research focusing on specific resistant populations and potential intervention strategies is crucial to combat this rising threat.Keywords: Staphylococcus aureus, antimicrobial resistance, methicillin-resistant S. aureus, multidrug resistance, Hanoi, Vietna
- …