132 research outputs found

    Integrating evolutionary theory and social-ecological systems research to address the sustainability challenges of the Anthropocene

    Get PDF
    This is the final version. Available on open access from the Royal Society via the DOI in this recordData accessibility: This article has no additional data.The rapid, human-induced changes in the Earth system during the Anthropocene present humanity with critical sustainability challenges. Social-ecological systems (SES) research provides multiple approaches for understanding the complex interactions between humans, social systems, and environments and how we might direct them towards healthier and more resilient futures. However, general theories of SES change have yet to be fully developed. Formal evolutionary theory has been applied as a dynamic theory of change of complex phenomena in biology and the social sciences, but rarely in SES research. In this paper, we explore the connections between both fields, hoping to foster collaboration. After sketching out the distinct intellectual traditions of SES research and evolutionary theory, we map some of their terminological and theoretical connections. We then provide examples of how evolutionary theory might be incorporated into SES research through the use of systems mapping to identify evolutionary processes in SES, the application of concepts from evolutionary developmental biology to understand the connections between systems changes and evolutionary changes, and how evolutionary thinking may help design interventions for beneficial change. Integrating evolutionary theory and SES research can lead to a better understanding of SES changes and positive interventions for a more sustainable Anthropocene. This article is part of the theme issue 'Evolution and sustainability: gathering the strands for an Anthropocene synthesis'.European Union Horizon 2020European Research Council (ERC)National Science Foundation (NSF)Max Planck Institute of Evolutionary AnthropologySwedish Research CouncilErling-Persson Family FoundationFORMASIKEA FoundationEuropean UnionUSDA NIF

    Grifonin-1: A Small HIV-1 Entry Inhibitor Derived from the Algal Lectin, Griffithsin

    Get PDF
    Background: Griffithsin, a 121-residue protein isolated from a red algal Griffithsia sp., binds high mannose N-linked glycans of virus surface glycoproteins with extremely high affinity, a property that allows it to prevent the entry of primary isolates and laboratory strains of T- and M-tropic HIV-1. We used the sequence of a portion of griffithsin's sequence as a design template to create smaller peptides with antiviral and carbohydrate-binding properties. Methodology/Results: The new peptides derived from a trio of homologous β-sheet repeats that comprise the motifs responsible for its biological activity. Our most active antiviral peptide, grifonin-1 (GRFN-1), had an EC50 of 190.8±11.0 nM in in vitro TZM-bl assays and an EC50 of 546.6±66.1 nM in p24gag antigen release assays. GRFN-1 showed considerable structural plasticity, assuming different conformations in solvents that differed in polarity and hydrophobicity. Higher concentrations of GRFN-1 formed oligomers, based on intermolecular β-sheet interactions. Like its parent protein, GRFN-1 bound viral glycoproteins gp41 and gp120 via the N-linked glycans on their surface. Conclusion: Its substantial antiviral activity and low toxicity in vitro suggest that GRFN-1 and/or its derivatives may have therapeutic potential as topical and/or systemic agents directed against HIV-1

    Women in South Africa: Striving for full equality post-apartheid

    Get PDF
    Life for South African women post-apartheid reflects both legislative advances and lingering challenges. Despite progress in the post-apartheid world, South Africa is still characterized by a high level of economic disparity, meaning that daily life for individual women can be quite different depending on one’s race, socioeconomic status, and age. Thus, the concept of intersectionality is critical to understand what it means to be a woman in South Africa today. Despite advances in girls’ access to education at both the primary and secondary levels, women still face significant challenges when they enter the workforce by way of occupational segregation and stratification. As is the case internationally, South African women are also more likely to engage in unpaid work and to be employed in the informal sector. Taken together, these make it more likely that South African women live in poverty and become victims of interpersonal violence. With respect to health, the risk of HIV infection and the transmission of HIV from mother to baby are paramount concerns for South African women’s health

    ANDES, the high resolution spectrograph for the ELT: science case, baseline design and path to construction

    Get PDF

    Nutrient limitations to bacterial and fungal growth during cellulose decomposition in tropical forest soils

    Get PDF
    Nutrients constrain the soil carbon cycle in tropical forests, but we lack knowledge on how these constraints vary within the soil microbial community. Here, we used in situ fertilization in a montane tropical forest and in two lowland tropical forests on contrasting soil types to test the principal hypothesis that there are different nutrient constraints to different groups of microorganisms during the decomposition of cellulose. We also tested the hypotheses that decomposers shift from nitrogen to phosphorus constraints from montane to lowland forests, respectively, and are further constrained by potassium and sodium deficiency in the western Amazon. Cellulose and nutrients (nitrogen, phosphorus, potassium, sodium, and combined) were added to soils in situ, and microbial growth on cellulose (phospholipid fatty acids and ergosterol) and respiration were measured. Microbial growth on cellulose after single nutrient additions was highest following nitrogen addition for fungi, suggesting nitrogen as the primary limiting nutrient for cellulose decomposition. This was observed at all sites, with no clear shift in nutrient constraints to decomposition between lowland and montane sites. We also observed positive respiration and fungal growth responses to sodium and potassium addition at one of the lowland sites. However, when phosphorus was added, and especially when added in combination with other nutrients, bacterial growth was highest, suggesting that bacteria out-compete fungi for nitrogen where phosphorus is abundant. In summary, nitrogen constrains fungal growth and cellulose decomposition in both lowland and montane tropical forest soils, but additional nutrients may also be of critical importance in determining the balance between fungal and bacterial decomposition of cellulose

    Pan-cancer analysis of whole genomes

    Get PDF
    Cancer is driven by genetic change, and the advent of massively parallel sequencing has enabled systematic documentation of this variation at the whole-genome scale(1-3). Here we report the integrative analysis of 2,658 whole-cancer genomes and their matching normal tissues across 38 tumour types from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). We describe the generation of the PCAWG resource, facilitated by international data sharing using compute clouds. On average, cancer genomes contained 4-5 driver mutations when combining coding and non-coding genomic elements; however, in around 5% of cases no drivers were identified, suggesting that cancer driver discovery is not yet complete. Chromothripsis, in which many clustered structural variants arise in a single catastrophic event, is frequently an early event in tumour evolution; in acral melanoma, for example, these events precede most somatic point mutations and affect several cancer-associated genes simultaneously. Cancers with abnormal telomere maintenance often originate from tissues with low replicative activity and show several mechanisms of preventing telomere attrition to critical levels. Common and rare germline variants affect patterns of somatic mutation, including point mutations, structural variants and somatic retrotransposition. A collection of papers from the PCAWG Consortium describes non-coding mutations that drive cancer beyond those in the TERT promoter(4); identifies new signatures of mutational processes that cause base substitutions, small insertions and deletions and structural variation(5,6); analyses timings and patterns of tumour evolution(7); describes the diverse transcriptional consequences of somatic mutation on splicing, expression levels, fusion genes and promoter activity(8,9); and evaluates a range of more-specialized features of cancer genomes(8,10-18).Peer reviewe
    corecore