25 research outputs found

    Dendritic Morphology of Hippocampal and Amygdalar Neurons in Adolescent Mice Is Resilient to Genetic Differences in Stress Reactivity

    Get PDF
    Many studies have shown that chronic stress or corticosterone over-exposure in rodents leads to extensive dendritic remodeling, particularly of principal neurons in the CA3 hippocampal area and the basolateral amygdala. We here investigated to what extent genetic predisposition of mice to high versus low stress reactivity, achieved through selective breeding of CD-1 mice, is also associated with structural plasticity in Golgi-stained neurons. Earlier, it was shown that the highly stress reactive (HR) compared to the intermediate (IR) and low (LR) stress reactive mice line presents a phenotype, with respect to neuroendocrine parameters, sleep architecture, emotional behavior and cognition, that recapitulates some of the features observed in patients suffering from major depression. In late adolescent males of the HR, IR, and LR mouse lines, we observed no significant differences in total dendritic length, number of branch points and branch tips, summated tip order, number of primary dendrites or dendritic complexity of either CA3 pyramidal neurons (apical as well as basal dendrites) or principal neurons in the basolateral amygdala. Apical dendrites of CA1 pyramidal neurons were also unaffected by the differences in stress reactivity of the animals; marginally higher length and complexity of the basal dendrites were found in LR compared to IR but not HR mice. In the same CA1 pyramidal neurons, spine density of distal apical tertiary dendrites was significantly higher in LR compared to IR or HR animals. We tentatively conclude that the dendritic complexity of principal hippocampal and amygdala neurons is remarkably stable in the light of a genetic predisposition to high versus low stress reactivity, while spine density seems more plastic. The latter possibly contributes to the behavioral phenotype of LR versus HR animals

    Pan-cancer analysis of whole genomes

    Get PDF
    Cancer is driven by genetic change, and the advent of massively parallel sequencing has enabled systematic documentation of this variation at the whole-genome scale(1-3). Here we report the integrative analysis of 2,658 whole-cancer genomes and their matching normal tissues across 38 tumour types from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). We describe the generation of the PCAWG resource, facilitated by international data sharing using compute clouds. On average, cancer genomes contained 4-5 driver mutations when combining coding and non-coding genomic elements; however, in around 5% of cases no drivers were identified, suggesting that cancer driver discovery is not yet complete. Chromothripsis, in which many clustered structural variants arise in a single catastrophic event, is frequently an early event in tumour evolution; in acral melanoma, for example, these events precede most somatic point mutations and affect several cancer-associated genes simultaneously. Cancers with abnormal telomere maintenance often originate from tissues with low replicative activity and show several mechanisms of preventing telomere attrition to critical levels. Common and rare germline variants affect patterns of somatic mutation, including point mutations, structural variants and somatic retrotransposition. A collection of papers from the PCAWG Consortium describes non-coding mutations that drive cancer beyond those in the TERT promoter(4); identifies new signatures of mutational processes that cause base substitutions, small insertions and deletions and structural variation(5,6); analyses timings and patterns of tumour evolution(7); describes the diverse transcriptional consequences of somatic mutation on splicing, expression levels, fusion genes and promoter activity(8,9); and evaluates a range of more-specialized features of cancer genomes(8,10-18).Peer reviewe

    Helping Parents Generalize PCIT Skills to Manage ASD-Related Behaviors: Handouts and Clinical Applications

    No full text
    This chapter will provide several handouts for parents to help tailor Parent-Child Interaction Therapy (PCIT) skills to manage autism spectrum disorder (ASD)-related behaviors (e.g., repetitive play, sensory dysregulation, insistence on sameness, poor social skills). Handouts cover how to manage ASD-related behaviors within the context of PCIT’s two phases: Child-Directed Interaction (CDI) and Parent-Directed Interaction (PDI). The chapter will additionally provide strategies for clinicians to help parents generalize skill acquisition to the home (e.g., additional considerations for setting up Special Time practice) and community environments (e.g., using CDI skills throughout the day). This chapter and the accompanying parent handouts aim to provide information for clinicians to best support families of children with ASD in generalizing these skills to manage ASD-related behaviors

    Pharmacological Management of Anxiety Disorders in the Elderly

    No full text
    Anxiety disorders are common in the elderly. Additionally, anxiety symptoms often accompany co-morbid psychiatric, medical, as well as neurodegenerative diseases in the older population. Anxiety in the elderly, often accompanied by depression, can lead to worsening physical, cognitive and functional impairments in this vulnerable population. Antidepressants are considered first line treatment. Both SSRIs and SNRIs are efficacious and well-tolerated in the elderly. Some SSRIs are strong inhibitors of the cytochrome P450 hepatic pathway whereas others have less potential for drug interaction. Those antidepressants with more favorable pharmacokinetic profiles should be considered first-line in the treatment of anxiety. Mirtazapine and vortioxetine are also considered safe treatment options. Buspirone may have benefit, but lacks studies in elderly populations. Although tricyclic/tetracyclic antidepressants (TCAs) and monoamine oxidase inhibitors (MAOIs) may be effective in the elderly, their side effect and safety profiles are suboptimal and thus are not recommended in late-life. Benzodiazepines and beta blockers should generally be avoided when treating anxiety in the elderly. There is not enough evidence to support the use of antipsychotics or mood stabilizers given their risk of problems in both the long and short term. In addition, antipsychotics have a black box warning for increased mortality in elderly patients with dementia
    corecore