57 research outputs found

    An O(N) symmetric extension of the Sine-Gordon Equation

    Full text link
    We discuss an O(N) exension of the Sine-Gordon (S-G)equation which allows us to perform an expansion around the leading order in large-N result using Path-Integral methods. In leading order we show our methods agree with the results of a variational calculation at large-N. We discuss the striking differences for a non-polynomial interaction between the form for the effective potential in the Gaussian approximation that one obtains at large-N when compared to the N=1 case. This is in contrast to the case when the classical potential is a polynomial in the field and no such drastic differences occur. We find for our large-N extension of the Sine-Gordon model that the unbroken ground state is unstable as one increases the coupling constant (as it is for the original S-G equation) and we determine the stability criteria.Comment: 21 pages, Latex (Revtex4) v3:minor grammatical changes and addition

    Out-of-equilibrium evolution of quantum fields in the hybrid model with quantum back reaction

    Full text link
    The hybrid model with a scalar "inflaton" field coupled to a "Higgs" field with a broken symmetry potential is one of the promising models for inflation and (p)reheating after inflation. We consider the nonequilibrium evolution of the quantum fields of this model with quantum back reaction in the Hartree approximation, in particular the transition of the Higgs field from the metastable "false vacuum" to the broken symmetry phase. We have performed the renormalization of the equations of motion, of the gap equations and of the energy density, using dimensional regularization. We study the influence of the back reaction on the evolution of the classical fields and of the quantum fluctuations. We observe that back reaction plays an important role over a wide range of parameters. Some implications of our investigation for the preheating stage after cosmic inflation are presented.Comment: 35 pages, 16 eps figures, revtex4; v2: typos corrected and references added, accepted for publication in Physical Review

    Measurement of the Bottom-Strange Meson Mixing Phase in the Full CDF Data Set

    Get PDF
    We report a measurement of the bottom-strange meson mixing phase \beta_s using the time evolution of B0_s -> J/\psi (->\mu+\mu-) \phi (-> K+ K-) decays in which the quark-flavor content of the bottom-strange meson is identified at production. This measurement uses the full data set of proton-antiproton collisions at sqrt(s)= 1.96 TeV collected by the Collider Detector experiment at the Fermilab Tevatron, corresponding to 9.6 fb-1 of integrated luminosity. We report confidence regions in the two-dimensional space of \beta_s and the B0_s decay-width difference \Delta\Gamma_s, and measure \beta_s in [-\pi/2, -1.51] U [-0.06, 0.30] U [1.26, \pi/2] at the 68% confidence level, in agreement with the standard model expectation. Assuming the standard model value of \beta_s, we also determine \Delta\Gamma_s = 0.068 +- 0.026 (stat) +- 0.009 (syst) ps-1 and the mean B0_s lifetime, \tau_s = 1.528 +- 0.019 (stat) +- 0.009 (syst) ps, which are consistent and competitive with determinations by other experiments.Comment: 8 pages, 2 figures, Phys. Rev. Lett 109, 171802 (2012

    Expanding non homogeneous configurations of the λϕ4\lambda \phi^4 model

    Full text link
    A time dependent variational approach is considered to derive the equations of movement for the λϕ4\lambda \phi^4 model. The temporal evolution of the model is performed numerically in the frame of the Gaussian approximation in a lattice of 1+1 dimensions given non homogeneous initial conditions (like bubbles) for the classical and quantum parts of the field which expands. A schematic model for the initial conditions is presented considering the model at finite fermionic density. The non zero fermionic density may lead either to the restoration of the symmetry or to an even more asymmetric phase. Both kinds of situations are considered as initial conditions and the eventual differences in early time dynamics are discussed. In the early time evolution there is strong energy exchange between the classical and quantum parts of the field as the initial configuration expands. The contribution of the quantum fluctuations is discussed especially in the strong coupling constant limit. The continuum limit is analyzed.Comment: 23 pages (latex) plus thirteen figures in eps file

    Nonequilibrium Quantum Dynamics Of Disoriented Chiral Condensates

    Full text link
    The nonequilibrium dynamics of the chiral phase transition expected during the expansion of the quark-qluon plasma produced in a high energy hadron or heavy ion collision is studied in the O(4) linear sigma model to leading order in a large NN expansion. Starting from an approximate equilibrium configuration at an initial proper time τ\tau in the disordered phase we study the transition to the ordered broken symmetry phase as the system expands and cools. We give results for the proper time evolution of the effective pion mass, the order parameter as well as for the pion two point correlation function expressed in terms of a time dependent phase space number density and pair correlation density. We determine the phase space of initial conditions that lead to instabilities (exponentially growing long wave length modes) as the system evolves in time. These instabilities are what eventually lead to disoriented chiral condensates. In our simulations,we found that instabilities that are formed during the initial phases of the expansion exist for proper times that are at most 3fm/c3 fm/c and lead to condensate regions that do not contain large numbers of particles. The damping of instabilities is a consequence of strong coupling.Comment: 49 pages, figures available by reques

    CP Violation in τ3πντ\tau\rightarrow 3\pi\nu_\tau

    Full text link
    We consider CP violating effects in the decays τ(3π)ντ\tau\rightarrow (3\pi)\nu_\tau where both the JP=1+{\rm J}^{\rm P}=1^+ resonance, a1a_1, and JP=0{\rm J}^{\rm P}=0^- resonance, π\pi^\prime, can contribute. The interference between the a1a_1 and π\pi^\prime resonances can lead to enhanced CP-violating asymmetries whose magnitudes depend crucially on the π\pi^\prime decay constant, fπf_{\pi^\prime}. We make an estimate of fπf_{\pi^\prime} with a simplified chiral Lagrangian coupled to a massive pseudoscalar field, and we compare the estimates from the non-relativistic quark model and from the QCD sum rule with the estimate from the `mock' meson model. We then estimate quantitatively the size of CP-violating effects in a multi-Higgs-doublet model and scalar-leptoquark models. We find that, while CP-violating effects in the scalar-leptoquark models may require more than 101010^{10} τ\tau leptons, CP-violating effects from the multi-Higgs-doublet model can be seen at the 2σ2\sigma level with about 10710^7 τ\tau leptons using the chiral Lagrangian estimate of fπ=(15)×103f_{\pi^\prime}=(1\sim 5)\times 10^{-3} GeV.Comment: Latex, 30 pages, 2 figures (not included). Three compressed postscript files of the paper available at ftp://ftp.kek.jp/kek/preprints/TH/TH-419/kekth419.ps.gz, Tau1.ps.gz, Tau2.ps.g

    Search for a W ' boson decaying to a muon and a neutrino in pp collisions at √s =7 TeV

    Get PDF
    This is the Pre-Print version of the Article. The official published version can be accessed from the link below - Copyright @ 2011 ElsevierA new heavy gauge boson, W', decaying to a muon and a neutrino, is searched for in pp collisions at a centre-of-mass of 7 TeV. The data, collected with the CMS detector at the LHC, correspond to an integrated luminosity of 36 inverse picobarns. No significant excess of events above the standard model expectation is found in the transverse mass distribution of the muon-neutrino system. Masses below 1.40 TeV are excluded at the 95% confidence level for a sequential standard-model-like W'. The W' mass lower limit increases to 1.58 TeV when the present analysis is combined with the CMS result for the electron channel.This work is supported by the FMSR (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); Academy of Sciences and NICPB (Estonia); Academy of Finland, ME, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF and WCU (Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); PAEC (Pakistan); SCSR (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MST and MAE (Russia); MSTD (Serbia); MICINN and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); TUBITAK and TAEK (Turkey); STFC (United Kingdom); DOE and NSF (USA)

    Transverse-momentum and pseudorapidity distributions of charged hadrons in pp collisions at √s=7 TeV

    Get PDF
    Charged-hadron transverse-momentum and pseudorapidity distributions in proton-proton collisions at root s = 7 TeV are measured with the inner tracking system of the CMS detector at the LHC. The charged-hadron yield is obtained by counting the number of reconstructed hits, hit pairs, and fully reconstructed charged-particle tracks. The combination of the three methods gives a charged-particle multiplicity per unit of pseudorapidity dN(ch)/d eta vertical bar(vertical bar eta vertical bar<0.5) = 5.78 +/- 0.01(stat) +/- 0.23(stat) for non-single-diffractive events, higher than predicted by commonly used models. The relative increase in charged-particle multiplicity from root s = 0.9 to 7 TeV is [66.1 +/- 1.0(stat) +/- 4.2(syst)]%. The mean transverse momentum is measured to be 0.545 +/- 0.005(stat) +/- 0.015(syst) GeV/c. The results are compared with similar measurements at lower energies

    Performance of the CMS Level-1 trigger during commissioning with cosmic ray muons and LHC beams

    Get PDF
    This is the Pre-print version of the Article. The official published version can be accessed from the link below - Copyright @ 2010 IOPThe CMS Level-1 trigger was used to select cosmic ray muons and LHC beam events during data-taking runs in 2008, and to estimate the level of detector noise. This paper describes the trigger components used, the algorithms that were executed, and the trigger synchronisation. Using data from extended cosmic ray runs, the muon, electron/photon, and jet triggers have been validated, and their performance evaluated. Efficiencies were found to be high, resolutions were found to be good, and rates as expected.This work is supported by FMSR (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); Academy of Sciences and NICPB (Estonia); Academy of Finland, ME, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF (Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); PAEC (Pakistan); SCSR (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MST and MAE (Russia); MSTDS (Serbia); MICINN and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); TUBITAK and TAEK (Turkey); STFC (United Kingdom); DOE and NSF (USA)
    corecore