47 research outputs found

    Intracellular Calcium Deficits in Drosophila Cholinergic Neurons Expressing Wild Type or FAD-Mutant Presenilin

    Get PDF
    Much of our current understanding about neurodegenerative diseases can be attributed to the study of inherited forms of these disorders. For example, mutations in the presenilin 1 and 2 genes have been linked to early onset familial forms of Alzheimer's disease (FAD). Using the Drosophila central nervous system as a model we have investigated the role of presenilin in one of the earliest cellular defects associated with Alzheimer's disease, intracellular calcium deregulation. We show that expression of either wild type or FAD-mutant presenilin in Drosophila CNS neurons has no impact on resting calcium levels but does give rise to deficits in intracellular calcium stores. Furthermore, we show that a loss-of-function mutation in calmodulin, a key regulator of intracellular calcium, can suppress presenilin-induced deficits in calcium stores. Our data support a model whereby presenilin plays a role in regulating intracellular calcium stores and demonstrate that Drosophila can be used to study the link between presenilin and calcium deregulation

    Capsaicin Protects Mice from Community-Associated Methicillin-Resistant Staphylococcus aureus Pneumonia

    Get PDF
    BACKGROUND: α-toxin is one of the major virulence factors secreted by most Staphylococcus aureus strains, which played a central role in the pathogenesis of S. aureus pneumonia. The aim of this study was to investigate the impact of capsaicin on the production of α-toxin by community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA) strain USA 300 and to further assess its performance in the treatment of CA-MRSA pneumonia in a mouse model. METHODOLOGY/PRINCIPAL FINDINGS: The in vitro effects of capsaicin on α-toxin production by S. aureus USA 300 were determined using hemolysis, western blot, and real-time RT-PCR assays. The influence of capsaicin on the α-toxin-mediated injury of human alveolar epithelial cells was determined using viability and cytotoxicity assays. Mice were infected intranasally with S. aureus USA300; the in vivo protective effects of capsaicin against S. aureus pneumonia were assessed by monitoring the mortality, histopathological changes and cytokine levels. Low concentrations of capsaicin substantially decreased the production of α-toxin by S. aureus USA 300 without affecting the bacterial viability. The addition of capsaicin prevented α-toxin-mediated human alveolar cell (A549) injury in co-culture with S. aureus. Furthermore, the in vivo experiments indicated that capsaicin protected mice from CA-MRSA pneumonia caused by strain USA 300. CONCLUSIONS/SIGNIFICANCE: Capsaicin inhibits the production of α-toxin by CA-MRSA strain USA 300 in vitro and protects mice from CA-MRSA pneumonia in vivo. However, the results need further confirmation with other CA-MRSA lineages. This study supports the views of anti-virulence as a new antibacterial approach for chemotherapy

    Modulation of Astrocytic Mitochondrial Function by Dichloroacetate Improves Survival and Motor Performance in Inherited Amyotrophic Lateral Sclerosis

    Get PDF
    Mitochondrial dysfunction is one of the pathogenic mechanisms that lead to neurodegeneration in Amyotrophic Lateral Sclerosis (ALS). Astrocytes expressing the ALS-linked SOD1G93A mutation display a decreased mitochondrial respiratory capacity associated to phenotypic changes that cause them to induce motor neuron death. Astrocyte-mediated toxicity can be prevented by mitochondria-targeted antioxidants, indicating a critical role of mitochondria in the neurotoxic phenotype. However, it is presently unknown whether drugs currently used to stimulate mitochondrial metabolism can also modulate ALS progression. Here, we tested the disease-modifying effect of dichloroacetate (DCA), an orphan drug that improves the functional status of mitochondria through the stimulation of the pyruvate dehydrogenase complex activity (PDH). Applied to astrocyte cultures isolated from rats expressing the SOD1G93A mutation, DCA reduced phosphorylation of PDH and improved mitochondrial coupling as expressed by the respiratory control ratio (RCR). Notably, DCA completely prevented the toxicity of SOD1G93A astrocytes to motor neurons in coculture conditions. Chronic administration of DCA (500 mg/L) in the drinking water of mice expressing the SOD1G93A mutation increased survival by 2 weeks compared to untreated mice. Systemic DCA also normalized the reduced RCR value measured in lumbar spinal cord tissue of diseased SOD1G93A mice. A remarkable effect of DCA was the improvement of grip strength performance at the end stage of the disease, which correlated with a recovery of the neuromuscular junction area in extensor digitorum longus muscles. Systemic DCA also decreased astrocyte reactivity and prevented motor neuron loss in SOD1G93A mice. Taken together, our results indicate that improvement of the mitochondrial redox status by DCA leads to a disease-modifying effect, further supporting the therapeutic potential of mitochondria-targeted drugs in ALS

    Severe Pandemic H1N1 2009 Infection Is Associated with Transient NK and T Deficiency and Aberrant CD8 Responses

    Get PDF
    BACKGROUND: It is unclear why the severity of influenza varies in healthy adults or why the burden of severe influenza shifts to young adults when pandemic strains emerge. One possibility is that cross-protective T cell responses wane in this age group in the absence of recent infection. We therefore compared the acute cellular immune response in previously healthy adults with severe versus mild pandemic H1N1 infection. METHODS AND PRINCIPAL FINDINGS: 49 previously healthy adults admitted to the National Hospital of Tropical Diseases, Viet Nam with RT-PCR-confirmed 2009 H1N1 infection were prospectively enrolled. 39 recovered quickly whereas 10 developed severe symptoms requiring supplemental oxygen and prolonged hospitalization. Peripheral blood lymphocyte subset counts and activation (HLADR, CD38) and differentiation (CD27, CD28) marker expression were determined on days 0, 2, 5, 10, 14 and 28 by flow cytometry. NK, CD4 and CD8 lymphopenia developed in 100%, 90% and 60% of severe cases versus 13% (p<0.001), 28%, (p = 0.001) and 18% (p = 0.014) of mild cases. CD4 and NK counts normalized following recovery. B cell counts were not significantly associated with severity. CD8 activation peaked 6-8 days after mild influenza onset, when 13% (6-22%) were HLADR+CD38+, and was accompanied by a significant loss of resting/CD27+CD28+ cells without accumulation of CD27+CD28- or CD27-CD28- cells. In severe influenza CD8 activation peaked more than 9 days post-onset, and/or was excessive (30-90% HLADR+CD38+) in association with accumulation of CD27+CD28- cells and maintenance of CD8 counts. CONCLUSION: Severe influenza is associated with transient T and NK cell deficiency. CD8 phenotype changes during mild influenza are consistent with a rapidly resolving memory response whereas in severe influenza activation is either delayed or excessive, and partially differentiated cells accumulate within blood indicating that recruitment of effector cells to the lung could be impaired

    Comprehensive and Integrated Genomic Characterization of Adult Soft Tissue Sarcomas

    Get PDF
    Summary Sarcomas are a broad family of mesenchymal malignancies exhibiting remarkable histologic diversity. We describe the multi-platform molecular landscape of 206 adult soft tissue sarcomas representing 6 major types. Along with novel insights into the biology of individual sarcoma types, we report three overarching findings: (1) unlike most epithelial malignancies, these sarcomas (excepting synovial sarcoma) are characterized predominantly by copy-number changes, with low mutational loads and only a few genes (TP53, ATRX, RB1) highly recurrently mutated across sarcoma types; (2) within sarcoma types, genomic and regulomic diversity of driver pathways defines molecular subtypes associated with patient outcome; and (3) the immune microenvironment, inferred from DNA methylation and mRNA profiles, associates with outcome and may inform clinical trials of immune checkpoint inhibitors. Overall, this large-scale analysis reveals previously unappreciated sarcoma-type-specific changes in copy number, methylation, RNA, and protein, providing insights into refining sarcoma therapy and relationships to other cancer types

    Pan-cancer analysis of whole genomes

    Get PDF
    Cancer is driven by genetic change, and the advent of massively parallel sequencing has enabled systematic documentation of this variation at the whole-genome scale(1-3). Here we report the integrative analysis of 2,658 whole-cancer genomes and their matching normal tissues across 38 tumour types from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). We describe the generation of the PCAWG resource, facilitated by international data sharing using compute clouds. On average, cancer genomes contained 4-5 driver mutations when combining coding and non-coding genomic elements; however, in around 5% of cases no drivers were identified, suggesting that cancer driver discovery is not yet complete. Chromothripsis, in which many clustered structural variants arise in a single catastrophic event, is frequently an early event in tumour evolution; in acral melanoma, for example, these events precede most somatic point mutations and affect several cancer-associated genes simultaneously. Cancers with abnormal telomere maintenance often originate from tissues with low replicative activity and show several mechanisms of preventing telomere attrition to critical levels. Common and rare germline variants affect patterns of somatic mutation, including point mutations, structural variants and somatic retrotransposition. A collection of papers from the PCAWG Consortium describes non-coding mutations that drive cancer beyond those in the TERT promoter(4); identifies new signatures of mutational processes that cause base substitutions, small insertions and deletions and structural variation(5,6); analyses timings and patterns of tumour evolution(7); describes the diverse transcriptional consequences of somatic mutation on splicing, expression levels, fusion genes and promoter activity(8,9); and evaluates a range of more-specialized features of cancer genomes(8,10-18).Peer reviewe

    An integrated multi-omic analysis of iPSC-derived motor neurons from C9ORF72 ALS patients

    Get PDF
    Neurodegenerative diseases are challenging for systems biology because of the lack of reliable animal models or patient samples at early disease stages. Induced pluripotent stem cells (iPSCs) could address these challenges. We investigated DNA, RNA, epigenetics, and proteins in iPSC-derived motor neurons from patients with ALS carrying hexanucleotide expansions in C9ORF72. Using integrative computational methods combining all omics datasets, we identified novel and known dysregulated pathways. We used a C9ORF72 Drosophila model to distinguish pathways contributing to disease phenotypes from compensatory ones and confirmed alterations in some pathways in postmortem spinal cord tissue of patients with ALS. A different differentiation protocol was used to derive a separate set of C9ORF72 and control motor neurons. Many individual -omics differed by protocol, but some core dysregulated pathways were consistent. This strategy of analyzing patient-specific neurons provides disease-related outcomes with small numbers of heterogeneous lines and reduces variation from single-omics to elucidate network-based signatures

    Traumatic intracerebellar hematomas

    No full text
    corecore