78 research outputs found

    Targeting Angiogenesis with Multitargeted Tyrosine Kinase Inhibitors in the Treatment of Non-Small Cell Lung Cancer

    Get PDF
    The article reviews the current developmental status of antiangiogenic tyrosine kinase inhibitors (including vandetanib, sunitinib, axitinib, sorafenib, vatalanib, and pazopanib) in non-small cell lung cancer and discusses the need for optimal patient selection and potential future directions

    Deterministic Chaos and Fractal Complexity in the Dynamics of Cardiovascular Behavior: Perspectives on a New Frontier

    Get PDF
    Physiological systems such as the cardiovascular system are capable of five kinds of behavior: equilibrium, periodicity, quasi-periodicity, deterministic chaos and random behavior. Systems adopt one or more these behaviors depending on the function they have evolved to perform. The emerging mathematical concepts of fractal mathematics and chaos theory are extending our ability to study physiological behavior. Fractal geometry is observed in the physical structure of pathways, networks and macroscopic structures such the vasculature and the His-Purkinje network of the heart. Fractal structure is also observed in processes in time, such as heart rate variability. Chaos theory describes the underlying dynamics of the system, and chaotic behavior is also observed at many levels, from effector molecules in the cell to heart function and blood pressure. This review discusses the role of fractal structure and chaos in the cardiovascular system at the level of the heart and blood vessels, and at the cellular level. Key functional consequences of these phenomena are highlighted, and a perspective provided on the possible evolutionary origins of chaotic behavior and fractal structure. The discussion is non-mathematical with an emphasis on the key underlying concepts

    The role of the mitochondria and the endoplasmic reticulum contact sites in the development of the immune responses

    Get PDF
    Abstract Mitochondria and endoplasmic reticulum (ER) contact sites (MERCs) are dynamic modules enriched in subset of lipids and specialized proteins that determine their structure and functions. The MERCs regulate lipid transfer, autophagosome formation, mitochondrial fission, Ca2+ homeostasis and apoptosis. Since these functions are essential for cell biology, it is therefore not surprising that MERCs also play a critical role in organ physiology among which the immune system stands by its critical host defense function. This defense system must discriminate and tolerate host cells and beneficial commensal microorganisms while eliminating pathogenic ones in order to preserve normal homeostasis. To meet this goal, the immune system has two lines of defense. First, the fast acting but unspecific innate immune system relies on anatomical physical barriers and subsets of hematopoietically derived cells expressing germline-encoded receptors called pattern recognition receptors (PRR) recognizing conserved motifs on the pathogens. Second, the slower but very specific adaptive immune response is added to complement innate immunity. Adaptive immunity relies on another set of specialized cells, the lymphocytes, harboring receptors requiring somatic recombination to be expressed. Both innate and adaptive immune cells must be activated to phagocytose and process pathogens, migrate, proliferate, release soluble factors and destroy infected cells. Some of these functions are strongly dependent on lipid transfer, autophagosome formation, mitochondrial fission, and Ca2+ flux; this indicates that MERCs could regulate immunity

    Pan-cancer analysis of whole genomes

    Get PDF
    Cancer is driven by genetic change, and the advent of massively parallel sequencing has enabled systematic documentation of this variation at the whole-genome scale(1-3). Here we report the integrative analysis of 2,658 whole-cancer genomes and their matching normal tissues across 38 tumour types from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). We describe the generation of the PCAWG resource, facilitated by international data sharing using compute clouds. On average, cancer genomes contained 4-5 driver mutations when combining coding and non-coding genomic elements; however, in around 5% of cases no drivers were identified, suggesting that cancer driver discovery is not yet complete. Chromothripsis, in which many clustered structural variants arise in a single catastrophic event, is frequently an early event in tumour evolution; in acral melanoma, for example, these events precede most somatic point mutations and affect several cancer-associated genes simultaneously. Cancers with abnormal telomere maintenance often originate from tissues with low replicative activity and show several mechanisms of preventing telomere attrition to critical levels. Common and rare germline variants affect patterns of somatic mutation, including point mutations, structural variants and somatic retrotransposition. A collection of papers from the PCAWG Consortium describes non-coding mutations that drive cancer beyond those in the TERT promoter(4); identifies new signatures of mutational processes that cause base substitutions, small insertions and deletions and structural variation(5,6); analyses timings and patterns of tumour evolution(7); describes the diverse transcriptional consequences of somatic mutation on splicing, expression levels, fusion genes and promoter activity(8,9); and evaluates a range of more-specialized features of cancer genomes(8,10-18).Peer reviewe

    Shake-up for climate models

    No full text

    Subthalamic nucleus stimulation restores the efferent cortical drive to muscle in parallel to functional motor improvement

    No full text
    Pathological synchronization in large-scale motor networks constitutes a pathophysiological hallmark of Parkinson's disease (PD). Corticomuscular synchronization in PD is pronounced in lower frequency bands (<10Hz), whereas efficient cortical motor integration in healthy persons is driven in the beta frequency range. Electroencephalogram and electromyogram recordings at rest and during an isometric precision grip task were performed in four perioperative sessions in 10 patients with PD undergoing subthalamic nucleus deep-brain stimulation: (i) 1day before (D0); (ii) 1day after (D1); (iii) 8days after implantation of macroelectrodes with stimulation off (D8StimOff); and (iv) on (D8StimOn). Analyses of coherence and phase delays were performed in order to challenge the effects of microlesion and stimulation on corticomuscular coherence (CMC). Additionally, local field potentials recorded from the subthalamic nucleus on D1 allowed comprehensive mapping of motor-related synchronization in subthalamocortical and cerebromuscular networks. Motor performance improved at D8StimOn compared with D0 and D8StimOff paralleled by a reduction of muscular activity and CMC in the theta band (3.9-7.8Hz) and by an increase of CMC in the low-beta band (13.7-19.5Hz). Efferent motor cortical drives to muscle presented mainly below 10Hz on D8StimOff that were suppressed on D8StimOn and occurred on higher frequencies from 13 to 45Hz. On D1, coherence of the high-beta band (20.5-30.2Hz) increased during movement compared with rest in subthalamomuscular and corticomuscular projections, whereas it was attenuated in subcorticocortical projections. The present findings lend further support to the concept of pathological network synchronization in PD that is beneficially modulated by stimulation. © 2012 The Authors. European Journal of Neuroscience © 2012 Federation of European Neuroscience Societies and Blackwell Publishing Ltd
    corecore