77 research outputs found

    Imaging Pulmonary NF-kappaB Activation and Therapeutic Effects of MLN120B and TDZD-8

    Get PDF
    NF-κB activation is a critical signaling event in the inflammatory response and has been implicated in a number of pathological lung diseases. To enable the assessment of NF-κB activity in the lungs, we transfected a luciferase based NF-κB reporter into the lungs of mice or into Raw264.7 cells in culture. The transfected mice showed specific luciferase expression in the pulmonary tissues. Using these mouse models, we studied the kinetics of NF-κB activation following exposure to lipopolysaccharide (LPS). The Raw264.7 cells expressed a dose-dependent increase in luciferase following exposure to LPS and the NF-κB reporter mice expressed luciferase in the lungs following LPS challenge, establishing that bioluminescence imaging provides adequate sensitivity for tracking the NF-κB activation pathway. Interventions affecting the NF-κB pathway are promising clinical therapeutics, thus we further examined the effect of IKK-2 inhibition by MLN120B and glycogen synthase kinase 3 beta inhibition by TDZD-8 on NF-κB activation. Pre-treatment with either MLN120B or TDZD-8 attenuated NF-κB activation in the pulmonary tissues, which was accompanied with suppression of pro-inflammatory chemokine MIP-1ß and induction of anti-inflammatory cytokine IL-10. In summary, we have established an imaging based approach for non-invasive and longitudinal assessment of NF-κB activation and regulation during acute lung injury. This approach will potentiate further studies on NF-κB regulation under various inflammatory conditions

    Spike-Timing Precision and Neuronal Synchrony Are Enhanced by an Interaction between Synaptic Inhibition and Membrane Oscillations in the Amygdala

    Get PDF
    The basolateral complex of the amygdala (BLA) is a critical component of the neural circuit regulating fear learning. During fear learning and recall, the amygdala and other brain regions, including the hippocampus and prefrontal cortex, exhibit phase-locked oscillations in the high delta/low theta frequency band (∼2–6 Hz) that have been shown to contribute to the learning process. Network oscillations are commonly generated by inhibitory synaptic input that coordinates action potentials in groups of neurons. In the rat BLA, principal neurons spontaneously receive synchronized, inhibitory input in the form of compound, rhythmic, inhibitory postsynaptic potentials (IPSPs), likely originating from burst-firing parvalbumin interneurons. Here we investigated the role of compound IPSPs in the rat and rhesus macaque BLA in regulating action potential synchrony and spike-timing precision. Furthermore, because principal neurons exhibit intrinsic oscillatory properties and resonance between 4 and 5 Hz, in the same frequency band observed during fear, we investigated whether compound IPSPs and intrinsic oscillations interact to promote rhythmic activity in the BLA at this frequency. Using whole-cell patch clamp in brain slices, we demonstrate that compound IPSPs, which occur spontaneously and are synchronized across principal neurons in both the rat and primate BLA, significantly improve spike-timing precision in BLA principal neurons for a window of ∼300 ms following each IPSP. We also show that compound IPSPs coordinate the firing of pairs of BLA principal neurons, and significantly improve spike synchrony for a window of ∼130 ms. Compound IPSPs enhance a 5 Hz calcium-dependent membrane potential oscillation (MPO) in these neurons, likely contributing to the improvement in spike-timing precision and synchronization of spiking. Activation of the cAMP-PKA signaling cascade enhanced the MPO, and inhibition of this cascade blocked the MPO. We discuss these results in the context of spike-timing dependent plasticity and modulation by neurotransmitters important for fear learning, such as dopamine

    Pan-cancer analysis of whole genomes

    Get PDF
    Cancer is driven by genetic change, and the advent of massively parallel sequencing has enabled systematic documentation of this variation at the whole-genome scale(1-3). Here we report the integrative analysis of 2,658 whole-cancer genomes and their matching normal tissues across 38 tumour types from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). We describe the generation of the PCAWG resource, facilitated by international data sharing using compute clouds. On average, cancer genomes contained 4-5 driver mutations when combining coding and non-coding genomic elements; however, in around 5% of cases no drivers were identified, suggesting that cancer driver discovery is not yet complete. Chromothripsis, in which many clustered structural variants arise in a single catastrophic event, is frequently an early event in tumour evolution; in acral melanoma, for example, these events precede most somatic point mutations and affect several cancer-associated genes simultaneously. Cancers with abnormal telomere maintenance often originate from tissues with low replicative activity and show several mechanisms of preventing telomere attrition to critical levels. Common and rare germline variants affect patterns of somatic mutation, including point mutations, structural variants and somatic retrotransposition. A collection of papers from the PCAWG Consortium describes non-coding mutations that drive cancer beyond those in the TERT promoter(4); identifies new signatures of mutational processes that cause base substitutions, small insertions and deletions and structural variation(5,6); analyses timings and patterns of tumour evolution(7); describes the diverse transcriptional consequences of somatic mutation on splicing, expression levels, fusion genes and promoter activity(8,9); and evaluates a range of more-specialized features of cancer genomes(8,10-18).Peer reviewe

    Decreasing NF-κB Expression Enhances Odontoblastic Differentiation and Collagen Expression in Dental Pulp Stem Cells Exposed to Inflammatory Cytokines

    Get PDF
    Inflammatory response in the dental pulp can alter the collagen matrix formation by dental pulp stem cells and lead to a delay or poor healing of the pulp. This inflammatory response is mediated by cytokines, including interleukin-1β and tumor necrosis factor-α. In this study, it is hypothesized that suppressing the actions of these inflammatory cytokines by knocking down the activity of transcription factor Nuclear Factor–κB will lead to dental pulp stem cell differentiation into odontoblasts and the production of collagen. Here, the role of Nuclear Factor–κB signaling and its reduction was examined during odontogenic behavior in the presence of these cytokines. The results showed a significant increase in Nuclear Factor–κB gene expression and p65 protein expression by interleukin-1β and tumor necrosis factor-α. Nuclear Factor–κB activation in the presence of these cytokines decreased significantly in a dose-dependent manner by a Nuclear Factor–κB inhibitor (MG132) and p65 siRNA. Down-regulation of Nuclear Factor–κB activity also enhanced the gene expression of the odontoblastic markers (dentin sialophosphoprotein, Nestin, and alkaline phosphatase) and displayed an odontoblastic cell morphology indicating the promotion of odontogenic differentiation of dental pulp stem cells. Finally, dental pulp stem cells exposed to reduced Nuclear Factor–κB activity resulted in a significant increase in collagen (I)-α1 expression in the presence of these cytokines. In conclusion, a decrease in Nuclear Factor-κB in dental pulp stem cells in the presence of inflammatory cytokines enhanced odontoblastic differentiation and collagen matrix formation.The open access fee for this work was funded through the Texas A&M University Open Access to Knowledge (OAK) Fund

    Insulin-like growth factor-I induces the phosphorylation and nuclear exclusion of forkhead transcription factors in human neuroblastoma cells

    Full text link
    Akt-mediated phosphorylation of forkhead transcription factors is linked to growth factor-stimulated cell survival. We investigated whether the survival activity of insulin-like growth factor-I (IGF-I) in SH-SY5Y human neuroblastoma (NBL) cells is associated with phosphorylation and/or localization changes in forkhead proteins. IGF-I induced phosphorylation of Erks (p42/p44), FKHR (FOXO1a) (Ser 253), FKHRL1 (FOXO3a) (Ser 256), and Akt (Ser 473). PI3-K inhibitor, LY294002, reduced IGF-I-stimulated phosphorylation of FKHR, FKHRL1, and Akt, but did not affect Erk phosphorylation. Using a GFP-FKHR construct, FKHR imported into the nucleus during growth factor withdrawal-induced apoptosis. In addition, IGF-I rescue from serum withdrawal-induced apoptosis is associated with a rapid export of GFP-FKHR into the cytoplasm. Leptomycin B, an inhibitor of Crm1-mediated nuclear export, decreased the level of FKHRL1 phosphorylation in the presence of IGF-I in vector and FKHR overexpressing cells, but had no effect on the phosphorylation status of FKHR. In addition, leptomycin B prevented IGF-I stimulated nuclear export of GFP-FKHR. These studies show IGF-I phosphorylation of FKHR and FKHRL1 via a PI3-K-dependent pathway in NBL cells.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/44353/1/10495_2005_Article_429.pd
    corecore