117 research outputs found

    Mechanism-Based Screen Establishes Signalling Framework for DNA Damage-Associated G1 Checkpoint Response

    Get PDF
    DNA damage activates checkpoint controls which block progression of cells through the division cycle. Several different checkpoints exist that control transit at different positions in the cell cycle. A role for checkpoint activation in providing resistance of cells to genotoxic anticancer therapy, including chemotherapy and ionizing radiation, is widely recognized. Although the core molecular functions that execute different damage activated checkpoints are known, the signals that control checkpoint activation are far from understood. We used a kinome-spanning RNA interference screen to delineate signalling required for radiation-mediated retinoblastoma protein activation, the recognized executor of G1 checkpoint control. Our results corroborate the involvement of the p53 tumour suppressor (TP53) and its downstream targets p21CIP1/WAF1 but infer lack of involvement of canonical double strand break (DSB) recognition known for its role in activating TP53 in damaged cells. Instead our results predict signalling involving the known TP53 phosphorylating kinase PRPK/TP53RK and the JNK/p38MAPK activating kinase STK4/MST1, both hitherto unrecognised for their contribution to DNA damage G1 checkpoint signalling. Our results further predict a network topology whereby induction of p21CIP1/WAF1 is required but not sufficient to elicit checkpoint activation. Our experiments document a role of the kinases identified in radiation protection proposing their pharmacological inhibition as a potential strategy to increase radiation sensitivity in proliferating cancer cells

    Pan-cancer analysis of whole genomes

    Get PDF
    Cancer is driven by genetic change, and the advent of massively parallel sequencing has enabled systematic documentation of this variation at the whole-genome scale(1-3). Here we report the integrative analysis of 2,658 whole-cancer genomes and their matching normal tissues across 38 tumour types from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). We describe the generation of the PCAWG resource, facilitated by international data sharing using compute clouds. On average, cancer genomes contained 4-5 driver mutations when combining coding and non-coding genomic elements; however, in around 5% of cases no drivers were identified, suggesting that cancer driver discovery is not yet complete. Chromothripsis, in which many clustered structural variants arise in a single catastrophic event, is frequently an early event in tumour evolution; in acral melanoma, for example, these events precede most somatic point mutations and affect several cancer-associated genes simultaneously. Cancers with abnormal telomere maintenance often originate from tissues with low replicative activity and show several mechanisms of preventing telomere attrition to critical levels. Common and rare germline variants affect patterns of somatic mutation, including point mutations, structural variants and somatic retrotransposition. A collection of papers from the PCAWG Consortium describes non-coding mutations that drive cancer beyond those in the TERT promoter(4); identifies new signatures of mutational processes that cause base substitutions, small insertions and deletions and structural variation(5,6); analyses timings and patterns of tumour evolution(7); describes the diverse transcriptional consequences of somatic mutation on splicing, expression levels, fusion genes and promoter activity(8,9); and evaluates a range of more-specialized features of cancer genomes(8,10-18).Peer reviewe

    Prefabricated construction enabled by the Internet-of-Things

    No full text
    Prefabricated construction has been used for public rental housing in Hong Kong. In order to speed up housing delivery, Hong Kong Housing Authority (HKHA) have employed advanced technologies, including Building Information Modelling (BIM) and Radio Frequency Identification (RFID), in some of their pilot prefabrication-based construction projects. However, the information obtained from BIM and RFID is not well connected and shared among relevant stakeholders. This paper introduces a multi-dimensional Internet of Things (IoT)-enabled BIM platform (MITBIMP) to achieve real-time visibility and traceability in prefabricated construction. Design considerations of a RFID Gateway Operating System, visibility and traceability tools, Data Source Interoperability Services, and decision support services are specified for developing the MITBIMP. A case study from a real-life construction project in Hong Kong is used as a pilot project to demonstrate advanced decision-making by using cutting-edge concepts and technologies within the MITBIMP to providing a basis for real-time visibility and traceability of the whole processes of prefabrication-based construction.Department of Building and Real Estat
    corecore