65 research outputs found

    A facile chemical conversion synthesis of Sb2S3 nanotubes and the visible light-driven photocatalytic activities

    Get PDF
    We report a simple chemical conversion and cation exchange technique to realize the synthesis of Sb2S3 nanotubes at a low temperature of 90°C. The successful chemical conversion from ZnS nanotubes to Sb2S3 ones benefits from the large difference in solubility between ZnS and Sb2S3. The as-grown Sb2S3 nanotubes have been transformed from a weak crystallization to a polycrystalline structure via successive annealing. In addition to the detailed structural, morphological, and optical investigation of the yielded Sb2S3 nanotubes before and after annealing, we have shown high photocatalytic activities of Sb2S3 nanotubes for methyl orange degradation under visible light irradiation. This approach offers an effective control of the composition and structure of Sb2S3 nanomaterials, facilitates the production at a relatively low reaction temperature without the need of organics, templates, or crystal seeds, and can be extended to the synthesis of hollow structures with various compositions and shapes for unique properties

    Integration of decision support systems to improve decision support performance

    Get PDF
    Decision support system (DSS) is a well-established research and development area. Traditional isolated, stand-alone DSS has been recently facing new challenges. In order to improve the performance of DSS to meet the challenges, research has been actively carried out to develop integrated decision support systems (IDSS). This paper reviews the current research efforts with regard to the development of IDSS. The focus of the paper is on the integration aspect for IDSS through multiple perspectives, and the technologies that support this integration. More than 100 papers and software systems are discussed. Current research efforts and the development status of IDSS are explained, compared and classified. In addition, future trends and challenges in integration are outlined. The paper concludes that by addressing integration, better support will be provided to decision makers, with the expectation of both better decisions and improved decision making processes

    The prevalence of hyperuricemia in China: a meta-analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The prevalence of hyperuricemia varied in different populations and it appeared to be increasing in the past decades. Recent studies suggest that hyperuricemia is an independent risk factor for cardiovascular disease. However, there has not yet been a systematic analysis of the prevalence of hyperuricemia in China.</p> <p>Methods</p> <p>Epidemiological investigations on hyperuricemia in China published in journals were identified manually and on-line by using CBMDISC, Chongqing VIP database and CNKI database. Those Reported in English journals were identified using MEDLINE database. Selected studies had to describe an original study defined by strict screening and diagnostic criteria. The fixed effects model or random effects model was employed according to statistical test for homogeneity.</p> <p>Results</p> <p>Fifty-nine studies were selected, the statistical information of which was collected for systematic analysis. The results showed that the pooled prevalence of hyperuricemia in male was 21.6% (95%CI: 18.9%-24.6%), but it was only 8.6% (95%CI: 8.2%-10.2%) in female. It was found that thirty years was the risk point age in male and it was fifty years in female.</p> <p>Conclusions</p> <p>The prevalence of hyperuricemia is different as the period of age and it increases after 30 years in male and 50 in female. Interventions are necessary to change the risk factors before the key age which is 30 years in male and 50 in female.</p

    Pan-cancer analysis of whole genomes

    Get PDF
    Cancer is driven by genetic change, and the advent of massively parallel sequencing has enabled systematic documentation of this variation at the whole-genome scale(1-3). Here we report the integrative analysis of 2,658 whole-cancer genomes and their matching normal tissues across 38 tumour types from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). We describe the generation of the PCAWG resource, facilitated by international data sharing using compute clouds. On average, cancer genomes contained 4-5 driver mutations when combining coding and non-coding genomic elements; however, in around 5% of cases no drivers were identified, suggesting that cancer driver discovery is not yet complete. Chromothripsis, in which many clustered structural variants arise in a single catastrophic event, is frequently an early event in tumour evolution; in acral melanoma, for example, these events precede most somatic point mutations and affect several cancer-associated genes simultaneously. Cancers with abnormal telomere maintenance often originate from tissues with low replicative activity and show several mechanisms of preventing telomere attrition to critical levels. Common and rare germline variants affect patterns of somatic mutation, including point mutations, structural variants and somatic retrotransposition. A collection of papers from the PCAWG Consortium describes non-coding mutations that drive cancer beyond those in the TERT promoter(4); identifies new signatures of mutational processes that cause base substitutions, small insertions and deletions and structural variation(5,6); analyses timings and patterns of tumour evolution(7); describes the diverse transcriptional consequences of somatic mutation on splicing, expression levels, fusion genes and promoter activity(8,9); and evaluates a range of more-specialized features of cancer genomes(8,10-18).Peer reviewe

    Conducting polymer nanocomposite-based supercapacitors

    Get PDF
    The use of nanocomposites of electronically-conducting polymers for supercapacitors has increased significantly over the past years, due to their high capacitances and abilities to withstand many charge-discharge cycles. We have recently been investigating the use of nanocomposites of electronically-conducting polymers containing conducting and non-conducting nanomaterials such as carbon nanotubes and cellulose nanocrystals, for use in supercapacitors. In this contribution, we provide a summary of some of the key issues in this area of research. This discussion includes some history, fundamental concepts, the physical and chemical processes involved, and the challenges that these nanocomposite materials must overcome in order to become technologically viable. Due to space limitations, this is not a complete review of all the work that has been done in this field and we have focused on common themes that appear in the published work. Our aim is that this chapter will help readers to understand the advantages and challenges involved in the use of these materials in supercapacitors and to identify areas for further development

    Novel biased flux machine with double salient structure

    No full text
    2016 Eleventh International Conference on Ecological Vehicles and Renewable Energies (EVER), 6-8 April 2016, Monte Carlo, Monaco202308 bckwAccepted ManuscriptSelf-fundedPublishe

    Model-based unsupervised learning informs metformin-induced cell-migration inhibition through an AMPK-independent mechanism in breast cancer

    No full text
    We demonstrate that model-based unsupervised learning can uniquely discriminate single-cell subpopulations by their gene expression distributions, which in turn allow us to identify specific genes for focused functional studies. This method was applied to MDA-MB-231 breast cancer cells treated with the antidiabetic drug metformin, which is being repurposed for treatment of triple-negative breast cancer. Unsupervised learning identified a cluster of metformin-treated cells characterized by a significant suppression of 230 genes (p-value &lt; 2E-16). This analysis corroborates known studies of metformin action: a) pathway analysis indicated known mechanisms related to metformin action, including the citric acid (TCA) cycle, oxidative phosphorylation, and mitochondrial dysfunction (p-value &lt; 1E-9); b) 70% of these 230 genes were functionally implicated in metformin response; c) among remaining lesser functionally-studied genes for metformin-response was CDC42, down-regulated in breast cancer treated with metformin. However, CDC42's mechanisms in metformin response remained unclear. Our functional studies showed that CDC42 was involved in metformin-induced inhibition of cell proliferation and cell migration mediated through an AMPK-independent mechanism. Our results points to 230 genes that might serve as metformin response signatures, which needs to be tested in patients treated with metformin and, further investigation of CDC42 and AMPK-independence's role in metformin's anticancer mechanisms

    Model-based unsupervised learning informs metformin-induced cell-migration inhibition through an AMPK-independent mechanism in breast cancer

    No full text
    We demonstrate that model-based unsupervised learning can uniquely discriminate single-cell subpopulations by their gene expression distributions, which in turn allow us to identify specific genes for focused functional studies. This method was applied to MDA-MB-231 breast cancer cells treated with the antidiabetic drug metformin, which is being repurposed for treatment of triple-negative breast cancer. Unsupervised learning identified a cluster of metformin-treated cells characterized by a significant suppression of 230 genes (p-value < 2E-16). This analysis corroborates known studies of metformin action: a) pathway analysis indicated known mechanisms related to metformin action, including the citric acid (TCA) cycle, oxidative phosphorylation, and mitochondrial dysfunction (p-value < 1E-9); b) 70% of these 230 genes were functionally implicated in metformin response; c) among remaining lesser functionally-studied genes for metformin-response was CDC42, down-regulated in breast cancer treated with metformin. However, CDC42's mechanisms in metformin response remained unclear. Our functional studies showed that CDC42 was involved in metformin-induced inhibition of cell proliferation and cell migration mediated through an AMPK-independent mechanism. Our results points to 230 genes that might serve as metformin response signatures, which needs to be tested in patients treated with metformin and, further investigation of CDC42 and AMPK-independence's role in metformin's anticancer mechanisms
    corecore