12 research outputs found

    Exhaled volatile organic compounds in patients with non-small cell lung cancer: cross sectional and nested short-term follow-up study

    Get PDF
    BACKGROUND: Non-invasive diagnostic strategies aimed at identifying biomarkers of lung cancer are of great interest for early cancer detection. The aim of this study was to set up a new method for identifying and quantifying volatile organic compounds (VOCs) in exhaled air of patients with non-small cells lung cancer (NSCLC), by comparing the levels with those obtained from healthy smokers and non-smokers, and patients with chronic obstructive pulmonary disease. The VOC collection and analyses were repeated three weeks after the NSCLC patients underwent lung surgery. METHODS: The subjects' breath was collected in a Teflon(® )bulb that traps the last portion of single slow vital capacity. The 13 VOCs selected for this study were concentrated using a solid phase microextraction technique and subsequently analysed by means of gas cromatography/mass spectrometry. RESULTS: The levels of the selected VOCs ranged from 10(-12 )M for styrene to 10(-9 )M for isoprene. None of VOCs alone discriminated the study groups, and so it was not possible to identify one single chemical compound as a specific lung cancer biomarker. However, multinomial logistic regression analysis showed that VOC profile can correctly classify about 80 % of cases. Only isoprene and decane levels significantly decreased after surgery. CONCLUSION: As the combination of the 13 VOCs allowed the correct classification of the cases into groups, together with conventional diagnostic approaches, VOC analysis could be used as a complementary test for the early diagnosis of lung cancer. Its possible use in the follow-up of operated patients cannot be recommended on the basis of the results of our short-term nested study

    Pan-cancer analysis of whole genomes

    Get PDF
    Cancer is driven by genetic change, and the advent of massively parallel sequencing has enabled systematic documentation of this variation at the whole-genome scale(1-3). Here we report the integrative analysis of 2,658 whole-cancer genomes and their matching normal tissues across 38 tumour types from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). We describe the generation of the PCAWG resource, facilitated by international data sharing using compute clouds. On average, cancer genomes contained 4-5 driver mutations when combining coding and non-coding genomic elements; however, in around 5% of cases no drivers were identified, suggesting that cancer driver discovery is not yet complete. Chromothripsis, in which many clustered structural variants arise in a single catastrophic event, is frequently an early event in tumour evolution; in acral melanoma, for example, these events precede most somatic point mutations and affect several cancer-associated genes simultaneously. Cancers with abnormal telomere maintenance often originate from tissues with low replicative activity and show several mechanisms of preventing telomere attrition to critical levels. Common and rare germline variants affect patterns of somatic mutation, including point mutations, structural variants and somatic retrotransposition. A collection of papers from the PCAWG Consortium describes non-coding mutations that drive cancer beyond those in the TERT promoter(4); identifies new signatures of mutational processes that cause base substitutions, small insertions and deletions and structural variation(5,6); analyses timings and patterns of tumour evolution(7); describes the diverse transcriptional consequences of somatic mutation on splicing, expression levels, fusion genes and promoter activity(8,9); and evaluates a range of more-specialized features of cancer genomes(8,10-18).Peer reviewe
    corecore