125 research outputs found

    Impact of hormonal treatment duration in combination with radiotherapy for locally advanced prostate cancer: Meta-analysis of randomized trials

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hormone therapy plus radiotherapy significantly decreases recurrences and mortality of patients affected by locally advanced prostate cancer. In order to determine if difference exists according to the hormonal treatment duration, a literature-based meta-analysis was performed.</p> <p>Methods</p> <p>Relative risks (RR) were derived through a random-effect model. Differences in primary (biochemical failure, BF; cancer-specific survival, CSS), and secondary outcomes (overall survival, OS; local or distant recurrence, LR/DM) were explored. Absolute differences (AD) and the number needed to treat (NNT) were calculated. Heterogeneity, a meta-regression for clinic-pathological predictors and a correlation test for surrogates were conducted.</p> <p>Results</p> <p>Five trials (3,424 patients) were included. Patient population ranged from 267 to 1,521 patients. The longer hormonal treatment significantly improves BF (with significant heterogeneity) with an absolute benefit of 10.1%, and a non significant trend in CSS. With regard to secondary end-points, the longer hormonal treatment significantly decrease both the LR and the DM with an absolute difference of 11.7% and 11.5%. Any significant difference in OS was observed. None of the three identified clinico-pathological predictors (median PSA, range 9.5-20.35, Gleason score 7-10, 27-55% patients/trial, and T3-4, 13-77% patients/trial), did significantly affect outcomes. At the meta-regression analysis a significant correlation between the overall treatment benefit in BF, CSS, OS, LR and DM, and the length of the treatment was found (p≀0.03).</p> <p>Conclusions</p> <p>Although with significant heterogeneity (reflecting different patient' risk stratifications), a longer hormonal treatment duration significantly decreases biochemical, local and distant recurrences, with a trend for longer cancer specific survival.</p

    Metabotropic glutamate receptor 5 as a potential target for smoking cessation

    Get PDF
    Rationale Most habitual smokers find it difficult to quit smoking because they are dependent upon the nicotine present in tobacco smoke. Tobacco dependence is commonly treated pharmacologically using nicotine replacement therapy or drugs, such as varenicline, that target the nicotinic receptor. Relapse rates, however, remain high and there remains a need to develop novel non-nicotinic pharmacotherapies for the dependence that are more effective than existing treatments. Objective The purpose of this paper is to review the evidence from preclinical and clinical studies that drugs that antagonise the metabotropic glutamate receptor 5 (mGluR5) in the brain are likely to be efficacious as treatments for tobacco dependence. Results Imaging studies reveal that chronic exposure to tobacco smoke reduces the density of mGluR5s in human brain. Preclinical results demonstrate that negative allosteric modulators (NAMs) at mGluR5 attenuate both nicotine self-administration and the reinstatement of responding evoked by exposure to conditioned cues paired with nicotine delivery. They also attenuate the effects of nicotine on brain dopamine pathways implicated in addiction. Conclusions Although mGluR5 NAMs attenuate most of the key facets of nicotine dependence they potentiate the symptoms of nicotine withdrawal. This may limit their value as smoking cessation aids. The NAMs that have been employed most widely in preclinical studies of nicotine dependence have too many \u201coff target\u201d effects to be used clinically. However newer mGluR5 NAMs have been developed for clinical use in other indications. Future studies will determine if these agents can also be used effectively and safely to treat tobacco dependence

    Elevated calpain activity in acute myelogenous leukemia correlates with decreased calpastatin expression

    Get PDF
    Calpains are intracellular cysteine proteases that have crucial roles in many physiological and pathological processes. Elevated calpain activity has been associated with many pathological states. Calpain inhibition can be protective or lethal depending on the context. Previous work has shown that c-myc transformation regulates calpain activity by suppressing calpastatin, the endogenous negative regulator of calpain. Here, we have investigated calpain activity in primary acute myelogenous leukemia (AML) blast cells. Calpain activity was heterogeneous and greatly elevated over a wide range in AML blast cells, with no correlation to FAB classification. Activity was particularly elevated in the CD34+CD38− enriched fraction compared with the CD34+CD38+ fraction. Treatment of the cells with the specific calpain inhibitor, PD150606, induced significant apoptosis in AML blast cells but not in normal equivalent cells. Sensitivity to calpain inhibition correlated with calpain activity and preferentially targeted CD34+CD38− cells. There was no correlation between calpain activity and p-ERK levels, suggesting the ras pathway may not be a major contributor to calpain activity in AML. A significant negative correlation existed between calpain activity and calpastatin, suggesting calpastatin is the major regulator of activity in these cells. Analysis of previously published microarray data from a variety of AML patients demonstrated a significant negative correlation between calpastatin and c-myc expression. Patients who achieved a complete remission had significantly lower calpain activity than those who had no response to treatment. Taken together, these results demonstrate elevated calpain activity in AML, anti-leukemic activity of calpain inhibition and prognostic potential of calpain activity measurement

    Pan-cancer analysis of whole genomes

    Get PDF
    Cancer is driven by genetic change, and the advent of massively parallel sequencing has enabled systematic documentation of this variation at the whole-genome scale(1-3). Here we report the integrative analysis of 2,658 whole-cancer genomes and their matching normal tissues across 38 tumour types from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). We describe the generation of the PCAWG resource, facilitated by international data sharing using compute clouds. On average, cancer genomes contained 4-5 driver mutations when combining coding and non-coding genomic elements; however, in around 5% of cases no drivers were identified, suggesting that cancer driver discovery is not yet complete. Chromothripsis, in which many clustered structural variants arise in a single catastrophic event, is frequently an early event in tumour evolution; in acral melanoma, for example, these events precede most somatic point mutations and affect several cancer-associated genes simultaneously. Cancers with abnormal telomere maintenance often originate from tissues with low replicative activity and show several mechanisms of preventing telomere attrition to critical levels. Common and rare germline variants affect patterns of somatic mutation, including point mutations, structural variants and somatic retrotransposition. A collection of papers from the PCAWG Consortium describes non-coding mutations that drive cancer beyond those in the TERT promoter(4); identifies new signatures of mutational processes that cause base substitutions, small insertions and deletions and structural variation(5,6); analyses timings and patterns of tumour evolution(7); describes the diverse transcriptional consequences of somatic mutation on splicing, expression levels, fusion genes and promoter activity(8,9); and evaluates a range of more-specialized features of cancer genomes(8,10-18).Peer reviewe
    • 

    corecore