62 research outputs found
ETS Transcription Factors Control Transcription of EZH2 and Epigenetic Silencing of the Tumor Suppressor Gene Nkx3.1 in Prostate Cancer
ETS transcription factors regulate important signaling pathways involved in cell differentiation and development in many tissues and have emerged as important players in prostate cancer. However, the biological impact of ETS factors in prostate tumorigenesis is still debated.We performed an analysis of the ETS gene family using microarray data and real-time PCR in normal and tumor tissues along with functional studies in normal and cancer cell lines to understand the impact in prostate tumorigenesis and identify key targets of these transcription factors. We found frequent dysregulation of ETS genes with oncogenic (i.e., ERG and ESE1) and tumor suppressor (i.e., ESE3) properties in prostate tumors compared to normal prostate. Tumor subgroups (i.e., ERG(high), ESE1(high), ESE3(low) and NoETS tumors) were identified on the basis of their ETS expression status and showed distinct transcriptional and biological features. ERG(high) and ESE3(low) tumors had the most robust gene signatures with both distinct and overlapping features. Integrating genomic data with functional studies in multiple cell lines, we demonstrated that ERG and ESE3 controlled in opposite direction transcription of the Polycomb Group protein EZH2, a key gene in development, differentiation, stem cell biology and tumorigenesis. We further demonstrated that the prostate-specific tumor suppressor gene Nkx3.1 was controlled by ERG and ESE3 both directly and through induction of EZH2.These findings provide new insights into the role of the ETS transcriptional network in prostate tumorigenesis and uncover previously unrecognized links between aberrant expression of ETS factors, deregulation of epigenetic effectors and silencing of tumor suppressor genes. The link between aberrant ETS activity and epigenetic gene silencing may be relevant for the clinical management of prostate cancer and design of new therapeutic strategies
Pan-cancer analysis of whole genomes
Cancer is driven by genetic change, and the advent of massively parallel sequencing has enabled systematic documentation of this variation at the whole-genome scale(1-3). Here we report the integrative analysis of 2,658 whole-cancer genomes and their matching normal tissues across 38 tumour types from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). We describe the generation of the PCAWG resource, facilitated by international data sharing using compute clouds. On average, cancer genomes contained 4-5 driver mutations when combining coding and non-coding genomic elements; however, in around 5% of cases no drivers were identified, suggesting that cancer driver discovery is not yet complete. Chromothripsis, in which many clustered structural variants arise in a single catastrophic event, is frequently an early event in tumour evolution; in acral melanoma, for example, these events precede most somatic point mutations and affect several cancer-associated genes simultaneously. Cancers with abnormal telomere maintenance often originate from tissues with low replicative activity and show several mechanisms of preventing telomere attrition to critical levels. Common and rare germline variants affect patterns of somatic mutation, including point mutations, structural variants and somatic retrotransposition. A collection of papers from the PCAWG Consortium describes non-coding mutations that drive cancer beyond those in the TERT promoter(4); identifies new signatures of mutational processes that cause base substitutions, small insertions and deletions and structural variation(5,6); analyses timings and patterns of tumour evolution(7); describes the diverse transcriptional consequences of somatic mutation on splicing, expression levels, fusion genes and promoter activity(8,9); and evaluates a range of more-specialized features of cancer genomes(8,10-18).Peer reviewe
role of next generation sequencing technologies in personalized medicine
Following the completion of the Human Genome Project in 2003, research in oncology has progressively focused on the sequencing of cancer genomes, with the aim of better understanding the genetic basis of oncogenesis and identifying actionable alterations. The development of next-generation-sequencing (NGS) techniques, commercially available since 2006, allowed for a cost- and time-effective sequencing of tumor DNA, leading to a "genomic era" of cancer research and treatment. NGS provided a significant step forward in Personalized Medicine (PM) by enabling the detection of somatic driver mutations, resistance mechanisms, quantification of mutational burden, germline mutations, which settled the foundation of a new approach in cancer care. In this chapter, we discuss the history, available techniques, and applications of NGS in oncology, with a particular referral to the PM approach and the emerging role of the research field of pharmacogenomics
Nivolumab plus ipilimumab, with or without enzalutamide, in AR‐V7‐expressing metastatic castration‐resistant prostate cancer: A phase‐2 nonrandomized clinical trial
Reversing the effects of androgen‐deprivation therapy in men with metastatic castration‐resistant prostate cancer
Total economic value, ecosystem services and the role of public policy instruments in the creation and destruction of forest values
Established frameworks such as the Millennium Ecosystem Assessment (MEA) and the Total Economic Value (TEV) recognize how forest ecosystems have extrinsic and intrinsic value to society. We critically discuss the appropriateness of attempting to adapt a service-dominant logic (S-D logic) framework to meet the unique characteristics of forest ecosystems by incorporating elements from the MEA and TEV. This chapter enriches the current discussion related to S-D logic and forests by including inherent values in-neglect, no-use and no-trade. These categories highlight how the value of forests can be created or destroyed when forest owners neglect values to their wellbeing or when absence of transactions fail to clearly define beneficiaries. Within an overview of Services in Family Forestry we argue and illustrate how the process of participation in public policy programs can influence individual and collective value co-creation and co-destruction. Moreover, institutions can play a critical role in the value creation process as brokers between beneficiaries
- …
