177 research outputs found

    One-dimensional Model of a Gamma Klystron

    Full text link
    A new scheme for amplification of coherent gamma rays is proposed. The key elements are crystalline undulators - single crystals with periodically bent crystallographic planes exposed to a high energy beam of charged particles undergoing channeling inside the crystals. The scheme consists of two such crystals separated by a vacuum gap. The beam passes the crystals successively. The particles perform undulator motion inside the crystals following the periodic shape of the crystallographic planes. Gamma rays passing the crystals parallel to the beam get amplified due to interaction with the particles inside the crystals. The term `gamma klystron' is proposed for the scheme because its operational principles are similar to those of the optical klystron. A more simple one-crystal scheme is considered as well for the sake of comparison. It is shown that the gamma ray amplification in the klystron scheme can be reached at considerably lower particle densities than in the one-crystal scheme, provided that the gap between the crystals is sufficiently large.Comment: RevTeX4, 22 pages, 4 figure

    An augmented space recursion study of the electronic structure of rough epitaxial overlayers

    Full text link
    In this communication we propose the use of the Augmented Space Recursion as an ideal methodology for the study of electronic and magnetic structures of rough surfaces, interfaces and overlayers. The method can take into account roughness, short-ranged clustering effects, surface dilatation and interdiffusion. We illustrate our method by an application of Fe overlayer on Ag (100) surface.Comment: 22 pages, Latex, 6 postscript figure

    Superconductivity in the two dimensional Hubbard Model.

    Full text link
    Quasiparticle bands of the two-dimensional Hubbard model are calculated using the Roth two-pole approximation to the one particle Green's function. Excellent agreement is obtained with recent Monte Carlo calculations, including an anomalous volume of the Fermi surface near half-filling, which can possibly be explained in terms of a breakdown of Fermi liquid theory. The calculated bands are very flat around the (pi,0) points of the Brillouin zone in agreement with photoemission measurements of cuprate superconductors. With doping there is a shift in spectral weight from the upper band to the lower band. The Roth method is extended to deal with superconductivity within a four-pole approximation allowing electron-hole mixing. It is shown that triplet p-wave pairing never occurs. Singlet d_{x^2-y^2}-wave pairing is strongly favoured and optimal doping occurs when the van Hove singularity, corresponding to the flat band part, lies at the Fermi level. Nearest neighbour antiferromagnetic correlations play an important role in flattening the bands near the Fermi level and in favouring superconductivity. However the mechanism for superconductivity is a local one, in contrast to spin fluctuation exchange models. For reasonable values of the hopping parameter the transition temperature T_c is in the range 10-100K. The optimum doping delta_c lies between 0.14 and 0.25, depending on the ratio U/t. The gap equation has a BCS-like form and (2*Delta_{max})/(kT_c) ~ 4.Comment: REVTeX, 35 pages, including 19 PostScript figures numbered 1a to 11. Uses epsf.sty (included). Everything in uuencoded gz-compressed .tar file, (self-unpacking, see header). Submitted to Phys. Rev. B (24-2-95

    Green's Function Monte Carlo for Lattice Fermions: Application to the t-J Model

    Full text link
    We develop a general numerical method to study the zero temperature properties of strongly correlated electron models on large lattices. The technique, which resembles Green's Function Monte Carlo, projects the ground state component from a trial wave function with no approximations. We use this method to determine the phase diagram of the two-dimensional t-J model, using the Maxwell construction to investigate electronic phase separation. The shell effects of fermions on finite-sized periodic lattices are minimized by keeping the number of electrons fixed at a closed-shell configuration and varying the size of the lattice. Results obtained for various electron numbers corresponding to different closed-shells indicate that the finite-size effects in our calculation are small. For any value of interaction strength, we find that there is always a value of the electron density above which the system can lower its energy by forming a two-component phase separated state. Our results are compared with other calculations on the t-J model. We find that the most accurate results are consistent with phase separation at all interaction strengths.Comment: 22 pages, 22 figure

    Implementation of preventive and predictive BRCA testing in patients with breast, ovarian, pancreatic, and prostate cancer: a position paper of Italian Scientific Societies

    Get PDF
    Constitutional BRCA1/BRCA2 pathogenic or likely pathogenic variants (PVs) are associated with an increased risk for developing breast and ovarian cancers. Current evidence indicates that BRCA1/2 PVs are also associated with pancreatic cancer, and that BRCA2 PVs are associated with prostate cancer risk. The identification of carriers of constitutional PVs in the BRCA1/2 genes allows the implementation of individual and family prevention pathways, through validated screening programs and risk-reducing strategies. According to the relevant and increasing therapeutic predictive implications, the inclusion of BRCA testing in the routine management of patients with breast, ovarian, pancreatic and prostate cancers represent a key requirement to optimize medical or surgical therapeutic and prevention decision-making, and access to specific anticancer therapies. Therefore, accurate patient selection, the use of standardized and harmonized procedures, and adherence to homogeneous testing criteria, are essential elements to implement BRCA testing in clinical practice. This consensus position paper has been developed and approved by a multidisciplinary Expert Panel of 64 professionals on behalf of the AIOM–AIRO–AISP–ANISC–AURO–Fondazione AIOM–SIAPEC/IAP–SIBioC–SICO–SIF–SIGE–SIGU–SIU–SIURO–UROP Italian Scientific Societies, and a patient association (aBRCAdaBRA Onlus). The working group included medical, surgical and radiation oncologists, medical and molecular geneticists, clinical molecular biologists, surgical and molecular pathologists, organ specialists such as gynecologists, gastroenterologists and urologists, and pharmacologists. The manuscript is based on the expert consensus and reports the best available evidence, according to the current eligibility criteria for BRCA testing and counseling, it also harmonizes with current Italian National Guidelines and Clinical Recommendations

    Limits on WWZWWZ and WWγWW\gamma couplings from WWWW and WZWZ production in ppp\overline{p} collisions at s=1.8\sqrt{s} = 1.8 TeV

    Full text link
    Direct limits are set on WWZWWZ and WWγWW\gamma three-boson couplings in a search for WWWW and WZWZ production with high transverse momentum in ppp\overline{p} collisions at s=1.8\sqrt{s} = 1.8 TeV, using the Collider Detector at Fermilab. The results are in agreement with the SU(2) ×\times U(1) model of electroweak interactions. Assuming Standard Model WWγWW\gamma coupling, the the limits are interpreted as direct evidence for a non-zero WWZWWZ coupling at subprocess energies near 500 GeV. Alternatively, assumiong identical WWZWWZ and WWγWW\gamma couplings, bounds 0.11<κ<2.27-0.11 < \kappa < 2.27 and 0.81<λ<0.84-0.81 < \lambda < 0.84 are obtained at 95%95\% CL for a form factor scale 1000 GeV.Comment: 16 pages, submitted to PRL, URL: http://www-cdf.fnal.gov/physics/pub95/cdf2951_vvprl.p

    Pan-cancer analysis of whole genomes

    Get PDF
    Cancer is driven by genetic change, and the advent of massively parallel sequencing has enabled systematic documentation of this variation at the whole-genome scale(1-3). Here we report the integrative analysis of 2,658 whole-cancer genomes and their matching normal tissues across 38 tumour types from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). We describe the generation of the PCAWG resource, facilitated by international data sharing using compute clouds. On average, cancer genomes contained 4-5 driver mutations when combining coding and non-coding genomic elements; however, in around 5% of cases no drivers were identified, suggesting that cancer driver discovery is not yet complete. Chromothripsis, in which many clustered structural variants arise in a single catastrophic event, is frequently an early event in tumour evolution; in acral melanoma, for example, these events precede most somatic point mutations and affect several cancer-associated genes simultaneously. Cancers with abnormal telomere maintenance often originate from tissues with low replicative activity and show several mechanisms of preventing telomere attrition to critical levels. Common and rare germline variants affect patterns of somatic mutation, including point mutations, structural variants and somatic retrotransposition. A collection of papers from the PCAWG Consortium describes non-coding mutations that drive cancer beyond those in the TERT promoter(4); identifies new signatures of mutational processes that cause base substitutions, small insertions and deletions and structural variation(5,6); analyses timings and patterns of tumour evolution(7); describes the diverse transcriptional consequences of somatic mutation on splicing, expression levels, fusion genes and promoter activity(8,9); and evaluates a range of more-specialized features of cancer genomes(8,10-18).Peer reviewe

    Measurement of correlated μoverlineb\mu - {overline b} jet cross sections in ppˉp {\bar p} collisions at s=1.8\sqrt{s}=1.8 TeV

    Full text link
    We report on measurements of differential μbˉ\mu - {\bar b} cross sections, where the muon is from a semi-leptonic bb decay and the bˉ{\bar b} is identified using precision track reconstruction in jets. The semi-differential correlated cross sections, dσ\sigma/d\Et^{{\bar b}}, dσ\sigma/d\pt^{{\bar b}}, and dσ\sigma/dδϕ(μbˉ)\delta\phi(\mu - {\bar b}) for \pt^{\mu}>~9 GeV/c, ημ|\eta^{\mu}|~10 GeV, ηbˉ<|\eta^{{\bar b}}|<~1.5, are presented and compared to next-to-leading order QCD calculations.Comment: Uses Latex, Article 12 point, figures appended as uuencoded file The full PostScript available via WWW at http://www-cdf.fnal.gov/physics/pub95/cdf3164_mu_bbar_prd_final.p
    corecore