59 research outputs found

    China’s market economy, shadow banking and the frequency of growth slowdown

    Get PDF
    The activity of the Shadow Banks in China has been the subject of considerable interest in recent years. Total shadow banking lending has reached over 60% of GDP and has grown faster than regular bank lending. It has been argued that unregulated shadow banking has fuelled a credit boom that poses a risk to the stability of the financial system. This paper estimates a model of the Chinese economy using a DSGE framework that accommodates a banking sector that isolates the effects of lending to the private sector including shadow bank lending. A refinement of the model allows for bank lending including lending by the shadow banks to affect the credit premium on private investment. The main finding is that while financial shocks are significant, it is real shocks that dominate. The model is used to simulate the frequency of growth slowdowns in China and concludes that these are more likely to be driven by real sector shocks rather than financial sector, including shadow bank shocks. This paper differs from other applications in its use of indirect inference to test the fitted model against a threeequation VAR of inflation, output gap and interest rate

    Preclinical Evaluation of Bispecific Adaptor Molecule Controlled Folate Receptor CAR-T Cell Therapy With Special Focus on Pediatric Malignancies

    Get PDF
    Chimeric antigen receptor (CAR)-T cell therapy has transformed pediatric oncology by producing high remission rates and potent effects in CD19+ B-cell malignancies. This scenario is ideal as CD19 expression is homogeneous and human blood provides a favorable environment for CAR-T cells to thrive and destroy cancer cells (along with normal B cells). Yet, CAR-T cell therapies for solid tumors remain challenged by fewer tumor targets and poor CAR-T cell performances in a hostile tumor microenvironment. For acute myeloid leukemia and childhood solid tumors such as osteosarcoma, the primary treatment is systemic chemotherapy that often falls short of expectation especially for relapsed and refractory conditions. We aim to develop a CAR-T adaptor molecule (CAM)-based therapy that uses a bispecific small-molecule ligand EC17, fluorescein isothiocyanate (FITC) conjugated with folic acid, to redirect FITC-specific CAR-T cells against folate receptor (FR)-positive tumors. As previously confirmed in rodents as well as in human clinical studies, EC17 penetrates solid tumors within minutes and is retained due to high affinity for the FR, whereas unbound EC17 rapidly clears from the blood and from receptor-negative tissues. When combined with a rationally designed CAR construct, EC17 CAM was shown to trigger CAR-modified T cell activation and cytolytic activity with a low FR threshold against tumor targets. However, maximal cytolytic potential correlated with (i) functional FR levels (in a semi-log fashion), (ii) the amount of effector cells present, and (iii) tumors' natural sensitivity to T cell mediated killing. In tumor-bearing mice, administration of EC17 CAM was the key to drive CAR-T cell activation, proliferation, and persistence against FR+ pediatric hematologic and solid tumors. In our modeling systems, cytokine release syndrome (CRS) was induced under specific conditions, but the risk of severe CRS could be easily mitigated or prevented by applying intermittent dosing and/or dose-titration strategies for the EC17 CAM. Our approach offers the flexibility of antigen control, prevents T cell exhaustion, and provides additional safety mechanisms including rapid reversal of severe CRS with intravenous sodium fluorescein. In this paper, we summarize the translational aspects of our technology in support of clinical development

    Pan-cancer analysis of whole genomes

    Get PDF
    Cancer is driven by genetic change, and the advent of massively parallel sequencing has enabled systematic documentation of this variation at the whole-genome scale(1-3). Here we report the integrative analysis of 2,658 whole-cancer genomes and their matching normal tissues across 38 tumour types from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). We describe the generation of the PCAWG resource, facilitated by international data sharing using compute clouds. On average, cancer genomes contained 4-5 driver mutations when combining coding and non-coding genomic elements; however, in around 5% of cases no drivers were identified, suggesting that cancer driver discovery is not yet complete. Chromothripsis, in which many clustered structural variants arise in a single catastrophic event, is frequently an early event in tumour evolution; in acral melanoma, for example, these events precede most somatic point mutations and affect several cancer-associated genes simultaneously. Cancers with abnormal telomere maintenance often originate from tissues with low replicative activity and show several mechanisms of preventing telomere attrition to critical levels. Common and rare germline variants affect patterns of somatic mutation, including point mutations, structural variants and somatic retrotransposition. A collection of papers from the PCAWG Consortium describes non-coding mutations that drive cancer beyond those in the TERT promoter(4); identifies new signatures of mutational processes that cause base substitutions, small insertions and deletions and structural variation(5,6); analyses timings and patterns of tumour evolution(7); describes the diverse transcriptional consequences of somatic mutation on splicing, expression levels, fusion genes and promoter activity(8,9); and evaluates a range of more-specialized features of cancer genomes(8,10-18).Peer reviewe

    Retrospective evaluation of whole exome and genome mutation calls in 746 cancer samples

    No full text
    Funder: NCI U24CA211006Abstract: The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) curated consensus somatic mutation calls using whole exome sequencing (WES) and whole genome sequencing (WGS), respectively. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, which aggregated whole genome sequencing data from 2,658 cancers across 38 tumour types, we compare WES and WGS side-by-side from 746 TCGA samples, finding that ~80% of mutations overlap in covered exonic regions. We estimate that low variant allele fraction (VAF < 15%) and clonal heterogeneity contribute up to 68% of private WGS mutations and 71% of private WES mutations. We observe that ~30% of private WGS mutations trace to mutations identified by a single variant caller in WES consensus efforts. WGS captures both ~50% more variation in exonic regions and un-observed mutations in loci with variable GC-content. Together, our analysis highlights technological divergences between two reproducible somatic variant detection efforts

    Identification of Candidate Genes for Seed Glucosinolate Content Using Association Mapping in Brassica napus L.

    No full text
    Rapeseed contains glucosinolates, a toxic group of sulfur-containing glucosides, which play critical roles in defense against herbivores and microbes. However, the presence of glucosinolates in rapeseed reduces the value of the meal as feed for livestock. We performed association mapping of seed glucosinolate (GS) content using the 60K Brassica Infinium single nucleotide polymorphism (SNP) array in 520 oilseed rape accessions. A total of 11 peak SNPs significantly associated with GS content were detected in growing seasons of 2013 and 2014 and were located on B. napus chromosomes A08, A09, C03, and C09, respectively. Two associated regions of GS content covered by these markers were further verified, and three B. napus homologous genes involved in the biosynthesis and accumulation of GS were identified. These genes were multigene family members and were distributed on different chromosomes. Moreover, two genes (BnGRT2 and BnMYB28) associated with GS content were validated by the qRT-PCR analysis of their expression profiles. The further identification and functionalization of these genes will provide useful insight into the mechanism underlying GS biosynthesis and allocation in B. napus, and the associated SNPs markers could be helpful for molecular maker-assisted breeding for low seed GS in B. napus
    corecore