75 research outputs found

    Visual Working Memory Capacity and Proactive Interference

    Get PDF
    Background: Visual working memory capacity is extremely limited and appears to be relatively immune to practice effects or the use of explicit strategies. The recent discovery that visual working memory tasks, like verbal working memory tasks, are subject to proactive interference, coupled with the fact that typical visual working memory tasks are particularly conducive to proactive interference, suggests that visual working memory capacity may be systematically under-estimated. Methodology/Principal Findings: Working memory capacity was probed behaviorally in adult humans both in laboratory settings and via the Internet. Several experiments show that although the effect of proactive interference on visual working memory is significant and can last over several trials, it only changes the capacity estimate by about 15%. Conclusions/Significance: This study further confirms the sharp limitations on visual working memory capacity, both in absolute terms and relative to verbal working memory. It is suggested that future research take these limitations into account in understanding differences across a variety of tasks between human adults, prelinguistic infants and nonlinguistic animals

    Cdk5 Is Required for Memory Function and Hippocampal Plasticity via the cAMP Signaling Pathway

    Get PDF
    Memory formation is modulated by pre- and post-synaptic signaling events in neurons. The neuronal protein kinase Cyclin-Dependent Kinase 5 (Cdk5) phosphorylates a variety of synaptic substrates and is implicated in memory formation. It has also been shown to play a role in homeostatic regulation of synaptic plasticity in cultured neurons. Surprisingly, we found that Cdk5 loss of function in hippocampal circuits results in severe impairments in memory formation and retrieval. Moreover, Cdk5 loss of function in the hippocampus disrupts cAMP signaling due to an aberrant increase in phosphodiesterase (PDE) proteins. Dysregulation of cAMP is associated with defective CREB phosphorylation and disrupted composition of synaptic proteins in Cdk5-deficient mice. Rolipram, a PDE4 inhibitor that prevents cAMP depletion, restores synaptic plasticity and memory formation in Cdk5-deficient mice. Collectively, our results demonstrate a critical role for Cdk5 in the regulation of cAMP-mediated hippocampal functions essential for synaptic plasticity and memory formation.Norman B. Leventhal FellowshipUnited States. National Institutes of Health (NIH T32 MH074249)United States. National Institutes of Health (NIH RO1 NS051874

    The Menin Tumor Suppressor Protein Is Phosphorylated in Response to DNA Damage

    Get PDF
    Multiple endocrine neoplasia type 1 (MEN1) is a heritable cancer syndrome characterized by tumors of the pituitary, pancreas and parathyroid. Menin, the product of the MEN1 gene, is a tumor suppressor protein that functions in part through the regulation of transcription mediated by interactions with chromatin modifying enzymes.Here we show menin association with the 5' regions of DNA damage response genes increases after DNA damage and is correlated with RNA polymerase II association but not with changes in histone methylation. Furthermore, we were able to detect significant levels of menin at the 3' regions of CDKN1A and GADD45A under conditions of enhanced transcription following DNA damage. We also demonstrate that menin is specifically phosphorylated at Ser394 in response to several forms of DNA damage, Ser487 is dynamically phosphorylated and Ser543 is constitutively phosphorylated. Phosphorylation at these sites however does not influence the ability to interact with histone methyltransferase activity. In contrast, the interaction between menin and RNA polymerase II is influenced by phosphorylation, whereby a phospho-deficient mutant had a higher affinity for the elongating form of RNA polymerase compared to wild type. Additionally, a subset of MEN1-associated missense point mutants, fail to undergo DNA damage dependent phosphorylation.Together, our findings suggest that the menin tumor suppressor protein undergoes DNA damage induced phosphorylation and participates in the DNA damage transcriptional response

    Correlation between p38 mitogen-activated protein kinase and human telomerase reverse transcriptase in sarcomas

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>One of the major components of telomerase is the human telomerase reverse transcriptase (hTERT) as the catalytic protein. hTERT mRNA expression are reported to be associated with prognosis and tumor progression in several sarcomas. However, there is no clear understanding of the mechanisms of hTERT in human sarcomas. Recent studies have suggested that signals transmitted through p38 mitogen-activated protein kinase (MAPK) can increase or decrease hTERT transcription in human cells. The purpose of this study was to analyse the correlation between p38 MAPK and hTERT in sarcoma samples.</p> <p>Methods</p> <p>We investigated 36 soft tissue malignant fibrous histiocytomas (MFH), 24 liposarcomas (LS) and 9 bone MFH samples for hTERT and p38 MAPK expression. Quantitative detection of hTERT and p38 MAPK was performed by RT-PCR.</p> <p>Results</p> <p>There was a significant positive correlation between the values of hTERT and p38 MAPK in all samples (r = 0.445, p = 0.0001), soft tissue MFH (r = 0.352, p = 0.0352), LS (r = 0.704, p = 0.0001) and bone MFH samples (r = 0.802, p = 0.0093). Patients who had a higher than average expression of p38 MAPK had a significantly worse prognosis than other patients (p = 0.0036).</p> <p>Conclusions</p> <p>p38 MAPK may play a role in up-regulation of hTERT, and therefore, p38 MAPK may be a useful marker in the assessment of hTERT and patients' prognosis in sarcomas.</p

    Sildenafil, a phosphodiesterase type 5 inhibitor, enhances the antidepressant activity of amitriptyline but not desipramine, in the forced swim test in mice

    Get PDF
    The cholinergic theory of depression highlights the involvement of muscarinic acetylcholine receptors in the neurobiology of mood disorders. The present study was designed to investigate the effect of sildenafil, a phosphodiesterase type 5 inhibitor which exhibits cholinomimetic properties, alone and in combination with scopolamine in the forced swim test in mice. Moreover, we assessed the ability of sildenafil to modify the antidepressant activity of two tricyclic antidepressants with distinct cholinolytic activity, amitriptyline and desipramine. Swim sessions were conducted by placing mice in glass cylinders filled with water for 6 min and the duration of behavioral immobility during the last 4 min of the test was evaluated. Locomotor activity was measured with photoresistor actimeters. To evaluate the potential pharmacokinetic interaction between amitriptyline and sildenafil, brain and serum concentrations of amitriptyline were determined by HPLC. Sildenafil (1.25–20 mg/kg) as well as scopolamine (0.5 mg/kg) and its combination with sildenafil (1.25 mg/kg) did not affect the total immobility time duration. However, joint administration of scopolamine with sildenafil at doses of 2.5 and 5 mg/kg significantly reduced immobility time as compared to control group. Moreover, co-administration of scopolamine with sildenafil at the highest dose (5 mg/kg) significantly decreased immobility time as compared to scopolamine-treated group. Sildenafil (1.25, 2.5 and 5 mg/kg) significantly enhanced the antidepressant activity of amitriptyline (5 mg/kg). No changes in anti-immobility action of desipramine (20 mg/kg) in combination with sildenafil (5, 10 and 20 mg/kg) were observed. Sildenafil did not affect amitriptyline level in both brain and serum. In conclusion, the present study suggests that sildenafil may enhance the activity of antidepressant drugs which exhibit cholinolytic activity

    Pan-cancer analysis of whole genomes

    Get PDF
    Cancer is driven by genetic change, and the advent of massively parallel sequencing has enabled systematic documentation of this variation at the whole-genome scale(1-3). Here we report the integrative analysis of 2,658 whole-cancer genomes and their matching normal tissues across 38 tumour types from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). We describe the generation of the PCAWG resource, facilitated by international data sharing using compute clouds. On average, cancer genomes contained 4-5 driver mutations when combining coding and non-coding genomic elements; however, in around 5% of cases no drivers were identified, suggesting that cancer driver discovery is not yet complete. Chromothripsis, in which many clustered structural variants arise in a single catastrophic event, is frequently an early event in tumour evolution; in acral melanoma, for example, these events precede most somatic point mutations and affect several cancer-associated genes simultaneously. Cancers with abnormal telomere maintenance often originate from tissues with low replicative activity and show several mechanisms of preventing telomere attrition to critical levels. Common and rare germline variants affect patterns of somatic mutation, including point mutations, structural variants and somatic retrotransposition. A collection of papers from the PCAWG Consortium describes non-coding mutations that drive cancer beyond those in the TERT promoter(4); identifies new signatures of mutational processes that cause base substitutions, small insertions and deletions and structural variation(5,6); analyses timings and patterns of tumour evolution(7); describes the diverse transcriptional consequences of somatic mutation on splicing, expression levels, fusion genes and promoter activity(8,9); and evaluates a range of more-specialized features of cancer genomes(8,10-18).Peer reviewe
    corecore