47 research outputs found
Artificial graphene as a tunable Dirac material
Artificial honeycomb lattices offer a tunable platform to study massless
Dirac quasiparticles and their topological and correlated phases. Here we
review recent progress in the design and fabrication of such synthetic
structures focusing on nanopatterning of two-dimensional electron gases in
semiconductors, molecule-by-molecule assembly by scanning probe methods, and
optical trapping of ultracold atoms in crystals of light. We also discuss
photonic crystals with Dirac cone dispersion and topologically protected edge
states. We emphasize how the interplay between single-particle band structure
engineering and cooperative effects leads to spectacular manifestations in
tunneling and optical spectroscopies.Comment: Review article, 14 pages, 5 figures, 112 Reference
Rapidity and Centrality Dependence of Proton and Anti-proton Production from Au+Au Collisions at sqrt(sNN) = 130GeV
We report on the rapidity and centrality dependence of proton and anti-proton
transverse mass distributions from Au+Au collisions at sqrt(sNN) = 130GeV as
measured by the STAR experiment at RHIC. Our results are from the rapidity and
transverse momentum range of |y|<0.5 and 0.35 <p_t<1.00GeV/c. For both protons
and anti-protons, transverse mass distributions become more convex from
peripheral to central collisions demonstrating characteristics of collective
expansion. The measured rapidity distributions and the mean transverse momenta
versus rapidity are flat within |y|<0.5. Comparisons of our data with results
from model calculations indicate that in order to obtain a consistent picture
of the proton(anti-proton) yields and transverse mass distributions the
possibility of pre-hadronic collective expansion may have to be taken into
account.Comment: 4 pages, 3 figures, 1 table, submitted to PR
Transverse-momentum and collision-energy dependence of high-p(T) hadron suppression in Au+Au collisions at ultrarelativistic energies
We report high statistics measurements of inclusive charged hadron production in Au+Au and p+p collisions at rootS(NN)=200 GeV. A large, approximately constant hadron suppression is observed in central Au+Au collisions for 5<p(T)<12 GeV/c. The collision energy dependence of the yields and the centrality and p(T) dependence of the suppression provide stringent constraints on theoretical models of suppression. Models incorporating initial-state gluon saturation or partonic energy loss in dense matter are largely consistent with observations. We observe no evidence of p(T)-dependent suppression, which may be expected from models incorporating jet attenuation in cold nuclear matter or scattering of fragmentation hadrons
Evidence from d+Au measurements for final-state suppression of high-p(T) hadrons in Au plus Au collisions at RHIC
We report measurements of single-particle inclusive spectra and two-particle azimuthal distributions of charged hadrons at high transverse momentum (high p(T)) in minimum bias and central d+Au collisions at roots(NN)=200 GeV. The inclusive yield is enhanced in d+Au collisions relative to binary-scaled p+p collisions, while the two-particle azimuthal distributions are very similar to those observed in p+p collisions. These results demonstrate that the strong suppression of the inclusive yield and back-to-back correlations at high p(T) previously observed in central Au+Au collisions are due to final-state interactions with the dense medium generated in such collisions
Cross sections and transverse single-spin asymmetries in forward neutral-pion production from proton collisions at root s=200 GeV
Measurements of the production of forward high-energy pi(0) mesons from transversely polarized proton collisions at root200 GeV are reported. The cross section is generally consistent with next-to-leading order perturbative QCD calculations. The analyzing power is small at x(F) below about 0.3, and becomes positive and large at higher x(F), similar to the trend in data at roots less than or equal to20 GeV. The analyzing power is in qualitative agreement with perturbative QCD model expectations. This is the first significant spin result seen for particles produced with p(T)>1 GeV/c at a polarized proton collider
Azimuthal anisotropy at the relativistic heavy ion collider: The first and fourth harmonics
We report the first observations of the first harmonic (directed flow, v(1)) and the fourth harmonic (v(4)), in the azimuthal distribution of particles with respect to the reaction plane in Au+Au collisions at the BNL Relativistic Heavy Ion Collider (RHIC). Both measurements were done taking advantage of the large elliptic flow (v(2)) generated at RHIC. From the correlation of v(2) with v(1) it is determined that v(2) is positive, or in-plane. The integrated v(4) is about a factor of 10 smaller than v(2). For the sixth (v(6)) and eighth (v(8)) harmonics upper limits on the magnitudes are reported
Pan-cancer analysis of whole genomes
Cancer is driven by genetic change, and the advent of massively parallel sequencing has enabled systematic documentation of this variation at the whole-genome scale(1-3). Here we report the integrative analysis of 2,658 whole-cancer genomes and their matching normal tissues across 38 tumour types from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). We describe the generation of the PCAWG resource, facilitated by international data sharing using compute clouds. On average, cancer genomes contained 4-5 driver mutations when combining coding and non-coding genomic elements; however, in around 5% of cases no drivers were identified, suggesting that cancer driver discovery is not yet complete. Chromothripsis, in which many clustered structural variants arise in a single catastrophic event, is frequently an early event in tumour evolution; in acral melanoma, for example, these events precede most somatic point mutations and affect several cancer-associated genes simultaneously. Cancers with abnormal telomere maintenance often originate from tissues with low replicative activity and show several mechanisms of preventing telomere attrition to critical levels. Common and rare germline variants affect patterns of somatic mutation, including point mutations, structural variants and somatic retrotransposition. A collection of papers from the PCAWG Consortium describes non-coding mutations that drive cancer beyond those in the TERT promoter(4); identifies new signatures of mutational processes that cause base substitutions, small insertions and deletions and structural variation(5,6); analyses timings and patterns of tumour evolution(7); describes the diverse transcriptional consequences of somatic mutation on splicing, expression levels, fusion genes and promoter activity(8,9); and evaluates a range of more-specialized features of cancer genomes(8,10-18).Peer reviewe
Pion-kaon correlations in central Au+Au collisions at root s(NN)=130 GeV
Pion-kaon correlation functions are constructed from central Au+Au STAR data taken at roots(NN)=130 GeV by the STAR detector at the Relativistic Heavy Ion Collider (RHIC). The results suggest that pions and kaons are not emitted at the same average space-time point. Space-momentum correlations, i.e., transverse flow, lead to a space-time emission asymmetry of pions and kaons that is consistent with the data. This result provides new independent evidence that the system created at RHIC undergoes a collective transverse expansion
Multistrange baryon production in Au-Au collisions at root s(NN)=130 GeV
The transverse mass spectra and midrapidity yields for Xis and Omegas are presented. For the 10% most central collisions, the (Xi) over bar (+)/h(-) ratio increases from the Super Proton Synchrotron to the Relativistic Heavy Ion Collider energies while the Xi(-)/h(-) stays approximately constant. A hydrodynamically inspired model fit to the Xi spectra, which assumes a thermalized source, seems to indicate that these multistrange particles experience a significant transverse flow effect, but are emitted when the system is hotter and the flow is smaller than values obtained from a combined fit to pi, K, p, and Lambdas
Identified particle distributions in pp and Au+Au collisions at root s(NN)=200 GeV
Transverse mass and rapidity distributions for charged pions, charged kaons, protons, and antiprotons are reported for roots(NN)=200 GeV pp and Au+Au collisions at Relativistic Heary Ion Collider (RHIC). Chemical and kinetic equilibrium model fits to our data reveal strong radial flow and long duration from chemical to kinetic freeze-out in central Au+Au collisions. The chemical freeze-out temperature appears to be independent of initial conditions at RHIC energies