89 research outputs found

    Experimental study of DED-arc additively manufactured steel double-lap shear bolted connections

    Get PDF
    An experimental study into the structural behaviour of Directed Energy Deposition-arc or wire arc additively manufactured (DED-arc AM and WAAM, respectively) steel double-lap shear bolted connections is presented. The mechanical properties of the material, which had a nominal yield stress of 420 MPa, were first determined by means of tensile coupon tests. Sixty connection specimens of two different nominal thicknesses and two print layer orientations were then tested to failure. The geometry of the test specimens was determined by 3D laser scanning, while the deformation and strain fields were measured during testing using digital image correlation. The observed failure modes included shear-out, net section tension, bearing and end-splitting, while a new hybrid mode of shear-out and net section tension was identified for the first time. The test results were compared against the predictions of current design specifications, namely AISI S100 and AS/NZS 4600 for cold-formed steel and AISC 360 and Eurocode 3 for structural steel, to evaluate their applicability to WAAM elements. Overall, the structural behaviour of the tested specimens followed the anticipated trends, and the predicted resistances determined from the current design specifications were generally reasonable. There were, however, a number of exceptions to this, highlighting the need for new design provisions, together with appropriate safety factors, that are specific to this form of manufacture

    Learning environment associated with use of mixed mode delivery model among secondary business studies students in Singapore

    Get PDF
    At many teacher education institutes around the world, preservice teachers are empowered to use pedagogical tools and strategies that engage their students. We used a modified version of the Constructivist Learning Environment Survey (CLES) to evaluate the effectiveness of a pedagogical model known as the Mixed Mode Delivery (MMD) model in terms of the CLES’s five scales of personal relevance, uncertainty, critical voice, shared control and negotiation. Comparisons were made between 2,216 secondary school students taught by the preservice teachers in an MMD group and 991 students in a control group in terms of the relative magnitudes of the gap between the actual and preferred learning environment in students’ school classrooms. The findings supported the positive impact of using MMD in terms of students’ perceptions of their classroom environments for all CLES scales

    Hippocampal Desynchronization of Functional Connectivity Prior to the Onset of Status Epilepticus in Pilocarpine-Treated Rats

    Get PDF
    Status epilepticus (SE), a pro-epileptogenic brain insult in rodent models of temporal lobe epilepsy, is successfully induced by pilocarpine in some, but not all, rats. This study aimed to identify characteristic alterations within the hippocampal neural network prior to the onset of SE. Sixteen microwire electrodes were implanted into the left hippocampus of male Sprague-Dawley rats. After a 7-day recovery period, animal behavior, hippocampal neuronal ensemble activities, and local field potentials (LFP) were recorded before and after an intra-peritoneal injection of pilocarpine (350 mg/kg). The single-neuron firing, population neuronal correlation, and coincident firing between neurons were compared between SE (n = 9) and nonSE rats (n = 12). A significant decrease in the strength of functional connectivity prior to the onset of SE, as measured by changes in coincident spike timing between pairs of hippocampal neurons, was exclusively found in SE rats. However, single-neuron firing and LFP profiles did not show a significant difference between SE and nonSE rats. These results suggest that desynchronization in the functional circuitry of the hippocampus, likely associated with a change in synaptic strength, may serve as an electrophysiological marker prior to SE in pilocarpine-treated rats

    Microfluidic device for robust generation of two-component liquid-in-air slugs with individually controlled composition

    Get PDF
    Using liquid slugs as microreactors and microvessels enable precise control over the conditions of their contents on short-time scales for a wide variety of applications. Particularly for screening applications, there is a need for control of slug parameters such as size and composition. We describe a new microfluidic approach for creating slugs in air, each comprising a size and composition that can be selected individually for each slug. Two-component slugs are formed by first metering the desired volume of each reagent, merging the two volumes into an end-to-end slug, and propelling the slug to induce mixing. Volume control is achieved by a novel mechanism: two closed chambers on the chip are initially filled with air, and a valve in each is briefly opened to admit one of the reagents. The pressure of each reagent can be individually selected and determines the amount of air compression, and thus the amount of liquid that is admitted into each chamber. We describe the theory of operation, characterize the slug generation chip, and demonstrate the creation of slugs of different compositions. The use of microvalves in this approach enables robust operation with different liquids, and also enables one to work with extremely small samples, even down to a few slug volumes. The latter is important for applications involving precious reagents such as optimizing the reaction conditions for radiolabeling biological molecules as tracers for positron emission tomography

    Surgical strategies for treatment of malignant pancreatic tumors: extended, standard or local surgery?

    Get PDF
    Tumor related pancreatic surgery has progressed significantly during recent years. Pancreatoduodenectomy (PD) with lymphadenectomy, including vascular resection, still presents the optimal surgical procedure for carcinomas in the head of pancreas. For patients with small or low-grade malignant neoplasms, as well as small pancreatic metastases located in the mid-portion of pancreas, central pancreatectomy (CP) is emerging as a safe and effective option with a low risk of developing de-novo exocrine and/or endocrine insufficiency. Total pancreatectomy (TP) is not as risky as it was years ago and can nowadays safely be performed, but its indication is limited to locally extended tumors that cannot be removed by PD or distal pancreatectomy (DP) with tumor free surgical margins. Consequently, TP has not been adopted as a routine procedure by most surgeons. On the other hand, an aggressive attitude is required in case of advanced distal pancreatic tumors, provided that safe and experienced surgery is available. Due to the development of modern instruments, laparoscopic operations became more and more successful, even in malignant pancreatic diseases. This review summarizes the recent literature on the abovementioned topics

    Light Plays an Essential Role in Intracellular Distribution of Auxin Efflux Carrier PIN2 in Arabidopsis thaliana

    Get PDF
    BACKGROUND: Light plays a key role in multiple plant developmental processes. It has been shown that root development is modulated by shoot-localized light signaling and requires shoot-derived transport of the plant hormone, auxin. However, the mechanism by which light regulates root development is not largely understood. In plants, the endogenous auxin, indole-3-acetic acid, is directionally transported by plasma-membrane (PM)-localized auxin influx and efflux carriers in transporting cells. Remarkably, the auxin efflux carrier PIN proteins exhibit asymmetric PM localization, determining the polarity of auxin transport. Similar to PM-resident receptors and transporters in animal and yeast cells, PIN proteins undergo constitutive cycling between the PM and endosomal compartments. Auxin plays multiple roles in PIN protein intracellular trafficking, inhibiting PIN2 endocytosis at some concentrations and promoting PIN2 degradation at others. However, how PIN proteins are turned over in plant cells is yet to be addressed. METHODOLOGY AND PRINCIPLE FINDINGS: Using laser confocal scanning microscopy, and physiological and molecular genetic approaches, here, we show that in dark-grown seedlings, the PM localization of auxin efflux carrier PIN2 was largely reduced, and, in addition, PIN2 signal was detected in vacuolar compartments. This is in contrast to light-grown seedlings where PIN2 was predominantly PM-localized. In light-grown plants after shift to dark or to continuous red or far-red light, PIN2 also accumulated in vacuolar compartments. We show that PIN2 vacuolar targeting was derived from the PM via endocytic trafficking and inhibited by HY5-dependent light signaling. In addition, the ubiquitin 26S proteasome is involved in the process, since its inhibition by mutations in COP9 and a proteasome inhibitor MG132 impaired the process. CONCLUSIONS AND SIGNIFICANCE: Collectively, our data indicate that light plays an essential role in PIN2 intracellular trafficking, promoting PM-localization in the presence of light and, on the other hand, vacuolar targeting for protein degradation in the absence of light. Based on these results, we postulate that light regulation of root development is mediated at least in part by changes in the intracellular distribution of auxin efflux carriers, PIN proteins, in response to the light environment

    The impact of surgical delay on resectability of colorectal cancer: An international prospective cohort study

    Get PDF
    AIM: The SARS-CoV-2 pandemic has provided a unique opportunity to explore the impact of surgical delays on cancer resectability. This study aimed to compare resectability for colorectal cancer patients undergoing delayed versus non-delayed surgery. METHODS: This was an international prospective cohort study of consecutive colorectal cancer patients with a decision for curative surgery (January-April 2020). Surgical delay was defined as an operation taking place more than 4 weeks after treatment decision, in a patient who did not receive neoadjuvant therapy. A subgroup analysis explored the effects of delay in elective patients only. The impact of longer delays was explored in a sensitivity analysis. The primary outcome was complete resection, defined as curative resection with an R0 margin. RESULTS: Overall, 5453 patients from 304 hospitals in 47 countries were included, of whom 6.6% (358/5453) did not receive their planned operation. Of the 4304 operated patients without neoadjuvant therapy, 40.5% (1744/4304) were delayed beyond 4 weeks. Delayed patients were more likely to be older, men, more comorbid, have higher body mass index and have rectal cancer and early stage disease. Delayed patients had higher unadjusted rates of complete resection (93.7% vs. 91.9%, P = 0.032) and lower rates of emergency surgery (4.5% vs. 22.5%, P < 0.001). After adjustment, delay was not associated with a lower rate of complete resection (OR 1.18, 95% CI 0.90-1.55, P = 0.224), which was consistent in elective patients only (OR 0.94, 95% CI 0.69-1.27, P = 0.672). Longer delays were not associated with poorer outcomes. CONCLUSION: One in 15 colorectal cancer patients did not receive their planned operation during the first wave of COVID-19. Surgical delay did not appear to compromise resectability, raising the hypothesis that any reduction in long-term survival attributable to delays is likely to be due to micro-metastatic disease

    Pan-cancer analysis of whole genomes

    Get PDF
    Cancer is driven by genetic change, and the advent of massively parallel sequencing has enabled systematic documentation of this variation at the whole-genome scale(1-3). Here we report the integrative analysis of 2,658 whole-cancer genomes and their matching normal tissues across 38 tumour types from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). We describe the generation of the PCAWG resource, facilitated by international data sharing using compute clouds. On average, cancer genomes contained 4-5 driver mutations when combining coding and non-coding genomic elements; however, in around 5% of cases no drivers were identified, suggesting that cancer driver discovery is not yet complete. Chromothripsis, in which many clustered structural variants arise in a single catastrophic event, is frequently an early event in tumour evolution; in acral melanoma, for example, these events precede most somatic point mutations and affect several cancer-associated genes simultaneously. Cancers with abnormal telomere maintenance often originate from tissues with low replicative activity and show several mechanisms of preventing telomere attrition to critical levels. Common and rare germline variants affect patterns of somatic mutation, including point mutations, structural variants and somatic retrotransposition. A collection of papers from the PCAWG Consortium describes non-coding mutations that drive cancer beyond those in the TERT promoter(4); identifies new signatures of mutational processes that cause base substitutions, small insertions and deletions and structural variation(5,6); analyses timings and patterns of tumour evolution(7); describes the diverse transcriptional consequences of somatic mutation on splicing, expression levels, fusion genes and promoter activity(8,9); and evaluates a range of more-specialized features of cancer genomes(8,10-18).Peer reviewe

    From inflammaging to healthy aging by dietary lifestyle choices: is epigenetics the key to personalized nutrition?

    Get PDF
    corecore