25 research outputs found

    Repair at Single Targeted DNA Double-Strand Breaks in Pluripotent and Differentiated Human Cells

    Get PDF
    Differences in ex vivo cell culture conditions can drastically affect stem cell physiology. We sought to establish an assay for measuring the effects of chemical, environmental, and genetic manipulations on the precision of repair at a single DNA double-strand break (DSB) in pluripotent and somatic human cells. DSBs in mammalian cells are primarily repaired by either homologous recombination (HR) or nonhomologous end-joining (NHEJ). For the most part, previous studies of DSB repair in human cells have utilized nonspecific clastogens like ionizing radiation, which are highly nonphysiologic, or assayed repair at randomly integrated reporters. Measuring repair after random integration is potentially confounded by locus-specific effects on the efficiency and precision of repair. We show that the frequency of HR at a single DSB differs up to 20-fold between otherwise isogenic human embryonic stem cells (hESCs) based on the site of the DSB within the genome. To overcome locus-specific effects on DSB repair, we used zinc finger nucleases to efficiently target a DSB repair reporter to a safe-harbor locus in hESCs and a panel of somatic human cell lines. We demonstrate that repair at a targeted DSB is highly precise in hESCs, compared to either the somatic human cells or murine embryonic stem cells. Differentiation of hESCs harboring the targeted reporter into astrocytes reduces both the efficiency and precision of repair. Thus, the phenotype of repair at a single DSB can differ based on either the site of damage within the genome or the stage of cellular differentiation. Our approach to single DSB analysis has broad utility for defining the effects of genetic and environmental modifications on repair precision in pluripotent cells and their differentiated progeny

    Crystal structure of human XLF/Cernunnos reveals unexpected differences from XRCC4 with implications for NHEJ

    Get PDF
    The recently characterised 299-residue human XLF/Cernunnos protein plays a crucial role in DNA repair by non-homologous end joining (NHEJ) and interacts with the XRCC4–DNA Ligase IV complex. Here, we report the crystal structure of the XLF (1–233) homodimer at 2.3 Å resolution, confirming the predicted structural similarity to XRCC4. The XLF coiled-coil, however, is shorter than that of XRCC4 and undergoes an unexpected reverse in direction giving rise to a short distorted four helical bundle and a C-terminal helical structure wedged between the coiled-coil and head domain. The existence of a dimer as the major species is confirmed by size-exclusion chromatography, analytical ultracentrifugation, small-angle X-ray scattering and other biophysical methods. We show that the XLF structure is not easily compatible with a proposed XRCC4:XLF heterodimer. However, we demonstrate interactions between dimers of XLF and XRCC4 by surface plasmon resonance and analyse these in terms of surface properties, amino-acid conservation and mutations in immunodeficient patients. Our data are most consistent with head-to-head interactions in a 2:2:1 XRCC4:XLF:Ligase IV complex

    Expression of DNA damage response proteins and complete remission after radiotherapy of stage IB–IIA of cervical cancer

    Get PDF
    The primary aim of this study was to investigate if the expression of the DNA damage identifying protein DNA-PKcs known to be involved in DNA repair after treatment with ionising radiation can be used as a predictive marker for radiotherapy (RT) response in cervical cancer. Formalin-fixed primary tumour biopsies from 109 patients with cervical cancer, FIGO-stage IB–IIA, treated with preoperative brachytherapy followed by radical surgery were analysed by immunohistochemistry. In addition, correlation studies between early pathological tumour response to radiation and expression of Ku86, Ku70, Mdm-2, p53 and p21 in primary tumours were also performed. We found that tumour-transformed tissue shows positive immunostaining of DNA-PKcs, Ku86 and Ku70, while non-neoplastic squamous epithelium and tumour-free cervix glands show negative immunoreactivity. Expression of DNA-PKcs positively correlated with both Ku86 and Ku70, and a statistically significant correlation between the Ku subunits was also found. After RT, 85 patients demonstrated pathologic complete remission (pCR), whereas 24 patients had residual tumour in the surgical specimen (non-pCR). The main finding of our study is that there was no correlation between the outcome of RT and the expression of DNA-PK subunits. Positive p53 tumours were significantly more common among non-pCR cases than in patients with pCR (P=0.031). Expression of p21 and Mdm-2 did not correlate with the outcome of RT

    ATM Limits Incorrect End Utilization during Non-Homologous End Joining of Multiple Chromosome Breaks

    Get PDF
    Chromosome rearrangements can form when incorrect ends are matched during end joining (EJ) repair of multiple chromosomal double-strand breaks (DSBs). We tested whether the ATM kinase limits chromosome rearrangements via suppressing incorrect end utilization during EJ repair of multiple DSBs. For this, we developed a system for monitoring EJ of two tandem DSBs that can be repaired using correct ends (Proximal-EJ) or incorrect ends (Distal-EJ, which causes loss of the DNA between the DSBs). In this system, two DSBs are induced in a chromosomal reporter by the meganuclease I-SceI. These DSBs are processed into non-cohesive ends by the exonuclease Trex2, which leads to the formation of I-SceI–resistant EJ products during both Proximal-EJ and Distal-EJ. Using this method, we find that genetic or chemical disruption of ATM causes a substantial increase in Distal-EJ, but not Proximal-EJ. We also find that the increase in Distal-EJ caused by ATM disruption is dependent on classical non-homologous end joining (c-NHEJ) factors, specifically DNA-PKcs, Xrcc4, and XLF. We present evidence that Nbs1-deficiency also causes elevated Distal-EJ, but not Proximal-EJ, to a similar degree as ATM-deficiency. In addition, to evaluate the roles of these factors on end processing, we examined Distal-EJ repair junctions. We found that ATM and Xrcc4 limit the length of deletions, whereas Nbs1 and DNA-PKcs promote short deletions. Thus, the regulation of end processing appears distinct from that of end utilization. In summary, we suggest that ATM is important to limit incorrect end utilization during c-NHEJ

    Pan-cancer analysis of whole genomes

    Get PDF
    Cancer is driven by genetic change, and the advent of massively parallel sequencing has enabled systematic documentation of this variation at the whole-genome scale(1-3). Here we report the integrative analysis of 2,658 whole-cancer genomes and their matching normal tissues across 38 tumour types from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). We describe the generation of the PCAWG resource, facilitated by international data sharing using compute clouds. On average, cancer genomes contained 4-5 driver mutations when combining coding and non-coding genomic elements; however, in around 5% of cases no drivers were identified, suggesting that cancer driver discovery is not yet complete. Chromothripsis, in which many clustered structural variants arise in a single catastrophic event, is frequently an early event in tumour evolution; in acral melanoma, for example, these events precede most somatic point mutations and affect several cancer-associated genes simultaneously. Cancers with abnormal telomere maintenance often originate from tissues with low replicative activity and show several mechanisms of preventing telomere attrition to critical levels. Common and rare germline variants affect patterns of somatic mutation, including point mutations, structural variants and somatic retrotransposition. A collection of papers from the PCAWG Consortium describes non-coding mutations that drive cancer beyond those in the TERT promoter(4); identifies new signatures of mutational processes that cause base substitutions, small insertions and deletions and structural variation(5,6); analyses timings and patterns of tumour evolution(7); describes the diverse transcriptional consequences of somatic mutation on splicing, expression levels, fusion genes and promoter activity(8,9); and evaluates a range of more-specialized features of cancer genomes(8,10-18).Peer reviewe

    Regulation of pairing between broken DNA-containing chromatin regions by Ku80, DNA-PKcs, ATM, and 53BP1

    Get PDF
    Chromosome rearrangement is clinically and physiologically important because it can produce oncogenic fusion genes. Chromosome rearrangement requires DNA double-strand breaks (DSBs) at two genomic locations and misrejoining between the DSBs. Before DSB misrejoining, two DSB-containing chromatin regions move and pair with each other; however, the molecular mechanism underlying this process is largely unknown. We performed a spatiotemporal analysis of ionizing radiation-induced foci of p53-binding protein 1 (53BP1), a marker for DSB-containing chromatin. We found that some 53BP1 foci were paired, indicating that the two damaged chromatin regions neighboured one another. We searched for factors regulating the foci pairing and found that the number of paired foci increased when Ku80, DNA-PKcs, or ATM was absent. In contrast, 53BP1 depletion reduced the number of paired foci and dicentric chromosomes - an interchromosomal rearrangement. Foci were paired more frequently in heterochromatin than in euchromatin in control cells. Additionally, the reduced foci pairing in 53BP1-depleted cells was rescued by concomitant depletion of a heterochromatin building factor such as Kruppel-associated box-associated protein 1 or chromodomain helicase DNA-binding protein 3. These findings indicate that pairing between DSB-containing chromatin regions was suppressed by Ku80, DNA-PKcs, and ATM, and this pairing was promoted by 53BP1 through chromatin relaxation
    corecore