89 research outputs found

    c-Abl downregulates the slow phase of double-strand break repair

    Get PDF
    c-Abl tyrosine kinase is activated by agents that induce double-strand DNA breaks (DSBs) and interacts with key components of the DNA damage response and of the DSB repair machinery. However, the functional significance of c-Abl in these processes, remained unclear. In this study, we demonstrate, using comet assay and pulsed-field gel electrophoresis, that c-Abl inhibited the repair of DSBs induced by ionizing radiation, particularly during the second and slow phase of DSB repair. Pharmacological inhibition of c-Abl and c-Abl depletion by siRNA-mediated knockdown resulted in higher DSB rejoining. c-Abl null MEFs exhibited higher DSB rejoining compared with cells reconstituted for c-Abl expression. Abrogation of c-Abl kinase activation resulted in higher H2AX phosphorylation levels and higher numbers of post-irradiation γH2AX foci, consistent with a role of c-Abl in DSB repair regulation. In conjunction with these findings, transient abrogation of c-Abl activity resulted in increased cellular radioresistance. Our findings suggest a novel function for c-Abl in inhibition of the slow phase of DSB repair

    siRNAs Induce Efficient RNAi Response in Bombyx mori Embryos

    Get PDF
    Short interference RNA (siRNA) is widely used in mammalian cells. In insects, however, reports concerning the suitablility of siRNA in vivo is very limited compared with that of long dsRNA, which is thought to be more effective. There is insufficient information on the essential rules of siRNA design in insects, as very few siRNAs have been tested in this context. To establish an effective method of gene silencing using siRNA in vivo in insects, we determined the effects of siRNA on seven target genes. We designed siRNAs according to a new guideline and injected them into eggs of Bombyx mori. At the mRNA level, the expression of most of these genes was successfully silenced, down to less than half the constitutive level, which in some cases led to the development of distinctive phenotypes. In addition, we observed stronger effect of siRNA both on the mRNA level and the phenotype than that of long dsRNA under comparable conditions. These results indicate that direct injection of siRNA is an effective reverse-genetics tool for the analysis of embryogenesis in vivo in insects

    Artesunate induces necrotic cell death in schwannoma cells

    Get PDF
    Established as a potent anti-malaria medicine, artemisinin-based drugs have been suggested to have anti-tumour activity in some cancers. Although the mechanism is poorly understood, it has been suggested that artemisinin induces apoptotic cell death. Here, we show that the artemisinin analogue artesunate (ART) effectively induces cell death in RT4 schwannoma cells and human primary schwannoma cells. Interestingly, our data indicate for first time that the cell death induced by ART is largely dependent on necroptosis. ART appears to inhibit autophagy, which may also contribute to the cell death. Our data in human schwannoma cells show that ART can be combined with the autophagy inhibitor chloroquine (CQ) to potentiate the cell death. Thus, this study suggests that artemisinin-based drugs may be used in certain tumours where cells are necroptosis competent, and the drugs may act in synergy with apoptosis inducers or autophagy inhibitors to enhance their anti-tumour activity

    Systematic evaluation of immune regulation and modulation

    Get PDF
    Cancer immunotherapies are showing promising clinical results in a variety of malignancies. Monitoring the immune as well as the tumor response following these therapies has led to significant advancements in the field. Moreover, the identification and assessment of both predictive and prognostic biomarkers has become a key component to advancing these therapies. Thus, it is critical to develop systematic approaches to monitor the immune response and to interpret the data obtained from these assays. In order to address these issues and make recommendations to the field, the Society for Immunotherapy of Cancer reconvened the Immune Biomarkers Task Force. As a part of this Task Force, Working Group 3 (WG3) consisting of multidisciplinary experts from industry, academia, and government focused on the systematic assessment of immune regulation and modulation. In this review, the tumor microenvironment, microbiome, bone marrow, and adoptively transferred T cells will be used as examples to discuss the type and timing of sample collection. In addition, potential types of measurements, assays, and analyses will be discussed for each sample. Specifically, these recommendations will focus on the unique collection and assay requirements for the analysis of various samples as well as the high-throughput assays to evaluate potential biomarkers

    Pan-cancer analysis of whole genomes

    Get PDF
    Cancer is driven by genetic change, and the advent of massively parallel sequencing has enabled systematic documentation of this variation at the whole-genome scale(1-3). Here we report the integrative analysis of 2,658 whole-cancer genomes and their matching normal tissues across 38 tumour types from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). We describe the generation of the PCAWG resource, facilitated by international data sharing using compute clouds. On average, cancer genomes contained 4-5 driver mutations when combining coding and non-coding genomic elements; however, in around 5% of cases no drivers were identified, suggesting that cancer driver discovery is not yet complete. Chromothripsis, in which many clustered structural variants arise in a single catastrophic event, is frequently an early event in tumour evolution; in acral melanoma, for example, these events precede most somatic point mutations and affect several cancer-associated genes simultaneously. Cancers with abnormal telomere maintenance often originate from tissues with low replicative activity and show several mechanisms of preventing telomere attrition to critical levels. Common and rare germline variants affect patterns of somatic mutation, including point mutations, structural variants and somatic retrotransposition. A collection of papers from the PCAWG Consortium describes non-coding mutations that drive cancer beyond those in the TERT promoter(4); identifies new signatures of mutational processes that cause base substitutions, small insertions and deletions and structural variation(5,6); analyses timings and patterns of tumour evolution(7); describes the diverse transcriptional consequences of somatic mutation on splicing, expression levels, fusion genes and promoter activity(8,9); and evaluates a range of more-specialized features of cancer genomes(8,10-18).Peer reviewe

    Facile fabrication of centimeter-scale stripes with inverse-opal photonic crystals structure and analysis of formation mechanism

    No full text
    Due to their excellent photonic characteristics, colloidal crystals with periodic porous structures have attracted attention in fields such as bioseparation and photonic devices. In this work, we report a facile method to fabricate ultra-long colloidal crystal stripes with opal and inversed-opal structures. The colloidal crystal stripes were grown in a self-assembly process between polymeric microspheres (similar to 450 nm in diameter) and silica particles (14 nm + 5 nm), and formed during vertical evaporation of the solvent. The as-grown colloidal crystal stripes can be automatically curled and peeled from the glass substrate. The polymeric spheres were subsequently removed by sintering the composite under 500 degrees C, yielding porous stripes with inverse-opal structures. Polystyrene-block-poly-(methyl methacrylate)-block-poly-(acrylic acid) (P(St-MMA-AA)) composite microspheres were synthesized to be used as polymeric microspheres in this process. To successfully fabricate ICPC stripes, the continuous colloidal film must be pinned on the substrate surface, directional self-assembly of colloidal particles must occur, and there must be strong interaction among colloidal particles with sufficient magnitude of inner stress. Displaying characteristics such as centimeter-scale length, a periodic porous structure, and structural colors, these stripes have potential applications in bioanalysis, optical guides, and novel photonic devices
    corecore