5 research outputs found

    Are participant characteristics from ISCOLE study sites comparable to the rest of their country?

    Get PDF
    OBJECTIVES: The International Study of Childhood Obesity, Lifestyle and the Environment (ISCOLE) provides robust, multi-national information on physical activity, diet and weight status in 9–11-year-old children around the world. The purpose of this analysis was to examine the similarities and differences between participant characteristics from ISCOLE sites and data from nationally representative surveys from ISCOLE countries (Australia, Brazil, Canada, China, Colombia, Finland, Kenya, India, Portugal, South Africa, the United Kingdom and the United States). METHODS: Distributions of characteristics were assessed within each ISCOLE country-level database, and compared with published data from national or regional surveys, where available. Variables of comparison were identified a priori and included body mass index (BMI), physical activity (accelerometer-determined steps per day) and screen time (child-report). RESULTS: Of 12 countries, data on weight status (BMI) were available in 8 countries, data on measured physical activity (steps per day) were available in 5 countries and data on self-reported screen time were available in 9 countries. The five ISCOLE countries that were part of the Health Behaviour in School-aged Children Survey (that is, Canada, Finland, Portugal, the United Kingdom (England) and the United States) also provided comparable data on self-reported physical activity. Available country-specific data often used different measurement tools or cut-points, making direct comparisons difficult. Where possible, ISCOLE data were re-analyzed to match country-level data, but this step limited between-country comparisons. CONCLUSIONS: From the analyses performed, the ISCOLE data do not seem to be systematically biased; however, owing to limitations in data availability, data from ISCOLE should be used with appropriate caution when planning country-level population health interventions. This work highlights the need for harmonized measurement tools around the world while accounting for culturally specific characteristics, and the need for collaboration across study centers and research groups

    Pan-cancer analysis of whole genomes

    Get PDF
    Cancer is driven by genetic change, and the advent of massively parallel sequencing has enabled systematic documentation of this variation at the whole-genome scale(1-3). Here we report the integrative analysis of 2,658 whole-cancer genomes and their matching normal tissues across 38 tumour types from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). We describe the generation of the PCAWG resource, facilitated by international data sharing using compute clouds. On average, cancer genomes contained 4-5 driver mutations when combining coding and non-coding genomic elements; however, in around 5% of cases no drivers were identified, suggesting that cancer driver discovery is not yet complete. Chromothripsis, in which many clustered structural variants arise in a single catastrophic event, is frequently an early event in tumour evolution; in acral melanoma, for example, these events precede most somatic point mutations and affect several cancer-associated genes simultaneously. Cancers with abnormal telomere maintenance often originate from tissues with low replicative activity and show several mechanisms of preventing telomere attrition to critical levels. Common and rare germline variants affect patterns of somatic mutation, including point mutations, structural variants and somatic retrotransposition. A collection of papers from the PCAWG Consortium describes non-coding mutations that drive cancer beyond those in the TERT promoter(4); identifies new signatures of mutational processes that cause base substitutions, small insertions and deletions and structural variation(5,6); analyses timings and patterns of tumour evolution(7); describes the diverse transcriptional consequences of somatic mutation on splicing, expression levels, fusion genes and promoter activity(8,9); and evaluates a range of more-specialized features of cancer genomes(8,10-18).Peer reviewe

    Translating insights into tumor evolution to clinical practice: promises and challenges

    No full text
    corecore