29 research outputs found

    Self-Assembled Polymeric Micellar Nanoparticles as Nanocarriers for Poorly Soluble Anticancer Drug Ethaselen

    Get PDF
    A series of monomethoxy poly(ethylene glycol)-poly(lactide) (mPEG-PLA) diblock copolymers were synthesized, and mPEG-PLA micelle was fabricated and used as a nanocarrier for solubilization and delivery of a promising anticancer drug ethaselen. Ethaselen was efficiently encapsulated into the micelles by the dialysis method, and the solubility of ethaselen in water was remarkably increased up to 82 μg/mL before freeze-drying. The mean diameter of ethaselen-loaded micelles ranged from 51 to 98 nm with a narrow size distribution and depended on the length of PLA block. In vitro hemolysis study indicated that mPEG-PLA copolymers and ethaselen-loaded polymeric micelles had no hemolytic effect on the erythrocyte. The enhanced antitumor efficacy and reduced toxic effect of ethaselen-loaded polymeric micelle when compared with ethaselen-HP-β-CD inclusion were observed at the same dose in H22human liver cancer cell bearing mouse models. These suggested that mPEG-PLA polymeric micelle nanoparticles had great potential as nanocarriers for effective solubilization of poorly soluble ethaselen and further reducing side effects and toxicities of the drug

    Endoplasmic Reticulum Stress-Induced JNK Activation Is a Critical Event Leading to Mitochondria-Mediated Cell Death Caused by β-Lapachone Treatment

    Get PDF
    β-lapachone (β-lap) is a bioreductive agent that is activated by the two-electron reductase NAD(P)H quinone oxidoreductase 1 (NQO1). Although β-lap has been reported to induce apoptosis in various cancer types in an NQO1-dependent manner, the signaling pathways by which β-lap causes apoptosis are poorly understood.β-lap-induced apoptosis and related molecular signaling pathways in NQO1-negative and NQO1-overexpressing MDA-MB-231 cells were investigated. Pharmacological inhibitors or siRNAs against factors involved in β-lap-induced apoptosis were used to clarify the roles played by such factors in β-lap-activated apoptotic signaling pathways. β-lap leads to clonogenic cell death and apoptosis in an NQO1- dependent manner. Treatment of NQO1-overexpressing MDA-MB-231 cells with β-lap causes rapid disruption of mitochondrial membrane potential, nuclear translocation of AIF and Endo G from mitochondria, and subsequent caspase-independent apoptotic cell death. siRNAs targeting AIF and Endo G effectively attenuate β-lap-induced clonogenic and apoptotic cell death. Moreover, β-lap induces cleavage of Bax, which accumulates in mitochondria, coinciding with the observed changes in mitochondria membrane potential. Pretreatment with Salubrinal (Sal), an endoplasmic reticulum (ER) stress inhibitor, efficiently attenuates JNK activation caused by β-lap, and subsequent mitochondria-mediated cell death. In addition, β-lap-induced generation and mitochondrial translocation of cleaved Bax are efficiently blocked by JNK inhibition.Our results indicate that β-lap triggers induction of endoplasmic reticulum (ER) stress, thereby leading to JNK activation and mitochondria-mediated apoptosis. The signaling pathways that we revealed in this study may significantly contribute to an improvement of NQO1-directed tumor therapies

    Targeting Angiogenesis-Dependent Calcified Neoplasms Using Combined Polymer Therapeutics

    Get PDF
    There is an immense clinical need for novel therapeutics for the treatment of angiogenesis-dependent calcified neoplasms such as osteosarcomas and bone metastases. We developed a new therapeutic strategy to target bone metastases and calcified neoplasms using combined polymer-bound angiogenesis inhibitors. Using an advanced "living polymerization" technique, the reversible addition-fragmentation chain transfer (RAFT), we conjugated the aminobisphosphonate alendronate (ALN), and the potent anti-angiogenic agent TNP-470 with N-(2-hydroxypropyl)methacrylamide (HPMA) copolymer through a Glycine-Glycine-Proline-Norleucine linker, cleaved by cathepsin K, a cysteine protease overexpressed at resorption sites in bone tissues. In this approach, dual targeting is achieved. Passive accumulation is possible due to the increase in molecular weight following polymer conjugation of the drugs, thus extravasating from the tumor leaky vessels and not from normal healthy vessels. Active targeting to the calcified tissues is achieved by ALN's affinity to bone mineral.The anti-angiogenic and antitumor potency of HPMA copolymer-ALN-TNP-470 conjugate was evaluated both in vitro and in vivo. We show that free and conjugated ALN-TNP-470 have synergistic anti-angiogenic and antitumor activity by inhibiting proliferation, migration and capillary-like tube formation of endothelial and human osteosarcoma cells in vitro. Evaluation of anti-angiogenic, antitumor activity and body distribution of HPMA copolymer-ALN-TNP-470 conjugate was performed on severe combined immunodeficiency (SCID) male mice inoculated with mCherry-labeled MG-63-Ras human osteosarcoma and by modified Miles permeability assay. Our targeted bi-specific conjugate reduced VEGF-induced vascular hyperpermeability by 92% and remarkably inhibited osteosarcoma growth in mice by 96%.This is the first report to describe a new concept of a narrowly-dispersed combined polymer therapeutic designed to target both tumor and endothelial compartments of bone metastases and calcified neoplasms at a single administration. This new approach of co-delivery of two synergistic drugs may have clinical utility as a potential therapy for angiogenesis-dependent cancers such as osteosarcoma and bone metastases

    Pan-cancer analysis of whole genomes

    Get PDF
    Cancer is driven by genetic change, and the advent of massively parallel sequencing has enabled systematic documentation of this variation at the whole-genome scale(1-3). Here we report the integrative analysis of 2,658 whole-cancer genomes and their matching normal tissues across 38 tumour types from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). We describe the generation of the PCAWG resource, facilitated by international data sharing using compute clouds. On average, cancer genomes contained 4-5 driver mutations when combining coding and non-coding genomic elements; however, in around 5% of cases no drivers were identified, suggesting that cancer driver discovery is not yet complete. Chromothripsis, in which many clustered structural variants arise in a single catastrophic event, is frequently an early event in tumour evolution; in acral melanoma, for example, these events precede most somatic point mutations and affect several cancer-associated genes simultaneously. Cancers with abnormal telomere maintenance often originate from tissues with low replicative activity and show several mechanisms of preventing telomere attrition to critical levels. Common and rare germline variants affect patterns of somatic mutation, including point mutations, structural variants and somatic retrotransposition. A collection of papers from the PCAWG Consortium describes non-coding mutations that drive cancer beyond those in the TERT promoter(4); identifies new signatures of mutational processes that cause base substitutions, small insertions and deletions and structural variation(5,6); analyses timings and patterns of tumour evolution(7); describes the diverse transcriptional consequences of somatic mutation on splicing, expression levels, fusion genes and promoter activity(8,9); and evaluates a range of more-specialized features of cancer genomes(8,10-18).Peer reviewe

    Heterotrophic bacterial and viral dynamics in Arctic freshwaters: results from a field study and nutrient-temperature manipulation experiments

    No full text
    Heterotrophic bacterial and viral concentrations (range, 0.7 x 10(4) to 206.2 x 10(4) ml(-1) and 0.05 x 10(6) to 128.9 x 10(6) ml(-1), respectively) were determined in several Arctic freshwater environments, including lakes and glacial ecosystems (78.55 degrees N, 11.56 degrees E). Our bacteria and virus results mirrored trends seen in temperate lakes, with an average virus-to-bacteria ratio (VBR) of 13 (range, 7.3-25.2) and viral concentrations and DOC positively correlated with bacterial concentrations (R = 0.964, P < 0.01 and R = 0.813, P < 0.05, respectively). Lysogenic bacteria, determined by induction with Mitomycin C, were not detected in any of the investigated Arctic freshwater environments. Nutrient-addition experiments at in situ and at elevated temperatures were performed to elucidate the factors which influenced the bacterial growth and the virus-bacteria interactions in Arctic freshwaters. Our results suggest that multiple limiting factors interacted and constrained bacterial growth. Bacterial concentrations and doubling times increased at elevated temperatures and appeared to be co-stimulated by phosphorus and carbon. However, viral concentrations showed a lack of response to nutrient addition thus indicating an uncoupling between bacteria and viruses in the experiment

    Tylophorine Analogs Allosterically Regulates Heat Shock Cognate Protein 70 And Inhibits Hepatitis C Virus Replication

    Get PDF
    Tylophorine analogs have been shown to exhibit diverse activities against cancer, inflammation, arthritis, and lupus in vivo. In this study, we demonstrated that two tylophorine analogs, DCB-3503 and rac-cryptopleurine, exhibit potent inhibitory activity against hepatitis C virus (HCV) replication in genotype 1b Con 1 isolate. The inhibition of HCV replication is at least partially mediated through cellular heat shock cognate protein 70 (Hsc70). Hsc70 associates with the HCV replication complex by primarily binding to the poly U/UC motifs in HCV RNA. The interaction of DCB-3503 and rac-cryptopleurine with Hsc70 promotes the ATP hydrolysis activity of Hsc70 in the presence of the 3′ poly U/UC motif of HCV RNA. Regulating the ATPase activity of Hsc70 may be one of the mechanisms by which tylophorine analogs inhibit HCV replication. This study demonstrates the novel anti-HCV activity of tylophorine analogs. Our results also highlight the importance of Hsc70 in HCV replication
    corecore