8 research outputs found

    Pan-cancer analysis of whole genomes

    Get PDF
    Cancer is driven by genetic change, and the advent of massively parallel sequencing has enabled systematic documentation of this variation at the whole-genome scale(1-3). Here we report the integrative analysis of 2,658 whole-cancer genomes and their matching normal tissues across 38 tumour types from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). We describe the generation of the PCAWG resource, facilitated by international data sharing using compute clouds. On average, cancer genomes contained 4-5 driver mutations when combining coding and non-coding genomic elements; however, in around 5% of cases no drivers were identified, suggesting that cancer driver discovery is not yet complete. Chromothripsis, in which many clustered structural variants arise in a single catastrophic event, is frequently an early event in tumour evolution; in acral melanoma, for example, these events precede most somatic point mutations and affect several cancer-associated genes simultaneously. Cancers with abnormal telomere maintenance often originate from tissues with low replicative activity and show several mechanisms of preventing telomere attrition to critical levels. Common and rare germline variants affect patterns of somatic mutation, including point mutations, structural variants and somatic retrotransposition. A collection of papers from the PCAWG Consortium describes non-coding mutations that drive cancer beyond those in the TERT promoter(4); identifies new signatures of mutational processes that cause base substitutions, small insertions and deletions and structural variation(5,6); analyses timings and patterns of tumour evolution(7); describes the diverse transcriptional consequences of somatic mutation on splicing, expression levels, fusion genes and promoter activity(8,9); and evaluates a range of more-specialized features of cancer genomes(8,10-18).Peer reviewe

    25-hydroxyvitamin D deficiency, exacerbation frequency and human rhinovirus exacerbations in chronic obstructive pulmonary disease.

    Get PDF
    BACKGROUND: 25-hydroxyvitamin D deficiency is associated with COPD and increased susceptibility to infection in the general population. METHODS: We investigated whether COPD patients deficient in 25-hydroxyvitamin D were more likely to be frequent exacerbators, had reduced outdoor activity and were more susceptible to human rhinovirus (HRV) exacerbations than those with insufficient and normal levels. We also investigated whether the frequency of FokI, BsmI and TaqIα 25-hydroxyvitamin D receptor (VDR) polymorphisms differed between frequent and infrequent exacerbators. RESULTS: There was no difference in 25-hydroxyvitamin D levels between frequent and infrequent exacerbators in the summer; medians 44.1 nmol/L (29.1 - 68.0) and 39.4 nmol/L (22.3 - 59.2) or winter; medians 24.9 nmol/L (14.3 - 43.1) and 27.1 nmol/L (19.9 - 37.6). Patients who spent less time outdoors in the 14 days prior to sampling had lower 25-hydroxyvitamin D levels (p = 0.02). Day length was independently associated with 25-hydroxyvitamin D levels (p = 0.02). There was no difference in 25-hydroxyvitamin D levels between baseline and exacerbation; medians 36.2 nmol/L (IQR 22.4-59.4) and 33.3 nmol/L (23.0-49.7); p = 0.43. HRV positive exacerbations were not associated with lower 25-hydroxyvitamin D levels at exacerbation than exacerbations that did not test positive for HRV; medians 30.0 nmol/L (20.4 - 57.8) and 30.6 nmol/L (19.4 - 48.7). There was no relationship between exacerbation frequency and any VDR polymorphisms (all p > 0.05). CONCLUSIONS: Low 25-hydroxyvitamin D levels in COPD are not associated with frequent exacerbations and do not increase susceptibility to HRV exacerbations. Independent of day length, patients who spend less time outdoors have lower 25-hydroxyvitamin D concentration
    corecore