36 research outputs found

    Synaptic AMPA receptor composition in development, plasticity and disease

    Get PDF

    The Biochemistry, Ultrastructure, and Subunit Assembly Mechanism of AMPA Receptors

    Get PDF
    The AMPA-type ionotropic glutamate receptors (AMPA-Rs) are tetrameric ligand-gated ion channels that play crucial roles in synaptic transmission and plasticity. Our knowledge about the ultrastructure and subunit assembly mechanisms of intact AMPA-Rs was very limited. However, the new studies using single particle EM and X-ray crystallography are revealing important insights. For example, the tetrameric crystal structure of the GluA2cryst construct provided the atomic view of the intact receptor. In addition, the single particle EM structures of the subunit assembly intermediates revealed the conformational requirement for the dimer-to-tetramer transition during the maturation of AMPA-Rs. These new data in the field provide new models and interpretations. In the brain, the native AMPA-R complexes contain auxiliary subunits that influence subunit assembly, gating, and trafficking of the AMPA-Rs. Understanding the mechanisms of the auxiliary subunits will become increasingly important to precisely describe the function of AMPA-Rs in the brain. The AMPA-R proteomics studies continuously reveal a previously unexpected degree of molecular heterogeneity of the complex. Because the AMPA-Rs are important drug targets for treating various neurological and psychiatric diseases, it is likely that these new native complexes will require detailed mechanistic analysis in the future. The current ultrastructural data on the receptors and the receptor-expressing stable cell lines that were developed during the course of these studies are useful resources for high throughput drug screening and further drug designing. Moreover, we are getting closer to understanding the precise mechanisms of AMPA-R-mediated synaptic plasticity

    Food Sovereignty in the City: Challenging Historical Barriers to Food Justice

    Get PDF
    Local food initiatives are steadily becoming a part of contemporary cities around the world and can take on many forms. While some of these initiatives are concerned with providing consumers with farm-fresh produce, a growing portion are concerned with increasing the food sovereignty of marginalized urban communities. This chapter provides an analysis of urban contexts with the aim of identifying conceptual barriers that may act as roadblocks to achieving food sovereignty in cities. Specifically, this paper argues that taken for granted commitments created during the birth of the modern city could act as conceptual barriers for the implementation of food sovereignty programs and that urban food activists and programs that challenge these barriers are helping to achieve the goal of restoring food sovereignty to local communities, no matter their reasons for doing so. At the very least, understanding the complexities of these barriers and how they operate helps to strengthen ties between urban food projects, provides these initiatives with ways to undermine common arguments used to support restrictive ordinances and policies, and illustrates the transformative potential of food sovereignty movements

    Systematic Review of Potential Health Risks Posed by Pharmaceutical, Occupational and Consumer Exposures to Metallic and Nanoscale Aluminum, Aluminum Oxides, Aluminum Hydroxide and Its Soluble Salts

    Get PDF
    Aluminum (Al) is a ubiquitous substance encountered both naturally (as the third most abundant element) and intentionally (used in water, foods, pharmaceuticals, and vaccines); it is also present in ambient and occupational airborne particulates. Existing data underscore the importance of Al physical and chemical forms in relation to its uptake, accumulation, and systemic bioavailability. The present review represents a systematic examination of the peer-reviewed literature on the adverse health effects of Al materials published since a previous critical evaluation compiled by Krewski et al. (2007). Challenges encountered in carrying out the present review reflected the experimental use of different physical and chemical Al forms, different routes of administration, and different target organs in relation to the magnitude, frequency, and duration of exposure. Wide variations in diet can result in Al intakes that are often higher than the World Health Organization provisional tolerable weekly intake (PTWI), which is based on studies with Al citrate. Comparing daily dietary Al exposures on the basis of “total Al”assumes that gastrointestinal bioavailability for all dietary Al forms is equivalent to that for Al citrate, an approach that requires validation. Current occupational exposure limits (OELs) for identical Al substances vary as much as 15-fold. The toxicity of different Al forms depends in large measure on their physical behavior and relative solubility in water. The toxicity of soluble Al forms depends upon the delivered dose of Al+ 3 to target tissues. Trivalent Al reacts with water to produce bidentate superoxide coordination spheres [Al(O2)(H2O4)+ 2 and Al(H2O)6 + 3] that after complexation with O2•−, generate Al superoxides [Al(O2•)](H2O5)]+ 2. Semireduced AlO2• radicals deplete mitochondrial Fe and promote generation of H2O2, O2 • − and OH•. Thus, it is the Al+ 3-induced formation of oxygen radicals that accounts for the oxidative damage that leads to intrinsic apoptosis. In contrast, the toxicity of the insoluble Al oxides depends primarily on their behavior as particulates. Aluminum has been held responsible for human morbidity and mortality, but there is no consistent and convincing evidence to associate the Al found in food and drinking water at the doses and chemical forms presently consumed by people living in North America and Western Europe with increased risk for Alzheimer\u27s disease (AD). Neither is there clear evidence to show use of Al-containing underarm antiperspirants or cosmetics increases the risk of AD or breast cancer. Metallic Al, its oxides, and common Al salts have not been shown to be either genotoxic or carcinogenic. Aluminum exposures during neonatal and pediatric parenteral nutrition (PN) can impair bone mineralization and delay neurological development. Adverse effects to vaccines with Al adjuvants have occurred; however, recent controlled trials found that the immunologic response to certain vaccines with Al adjuvants was no greater, and in some cases less than, that after identical vaccination without Al adjuvants. The scientific literature on the adverse health effects of Al is extensive. Health risk assessments for Al must take into account individual co-factors (e.g., age, renal function, diet, gastric pH). Conclusions from the current review point to the need for refinement of the PTWI, reduction of Al contamination in PN solutions, justification for routine addition of Al to vaccines, and harmonization of OELs for Al substances

    Synaptic AMPA receptor composition in development, plasticity and disease

    Full text link

    Pan-cancer analysis of whole genomes

    Get PDF
    Cancer is driven by genetic change, and the advent of massively parallel sequencing has enabled systematic documentation of this variation at the whole-genome scale(1-3). Here we report the integrative analysis of 2,658 whole-cancer genomes and their matching normal tissues across 38 tumour types from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). We describe the generation of the PCAWG resource, facilitated by international data sharing using compute clouds. On average, cancer genomes contained 4-5 driver mutations when combining coding and non-coding genomic elements; however, in around 5% of cases no drivers were identified, suggesting that cancer driver discovery is not yet complete. Chromothripsis, in which many clustered structural variants arise in a single catastrophic event, is frequently an early event in tumour evolution; in acral melanoma, for example, these events precede most somatic point mutations and affect several cancer-associated genes simultaneously. Cancers with abnormal telomere maintenance often originate from tissues with low replicative activity and show several mechanisms of preventing telomere attrition to critical levels. Common and rare germline variants affect patterns of somatic mutation, including point mutations, structural variants and somatic retrotransposition. A collection of papers from the PCAWG Consortium describes non-coding mutations that drive cancer beyond those in the TERT promoter(4); identifies new signatures of mutational processes that cause base substitutions, small insertions and deletions and structural variation(5,6); analyses timings and patterns of tumour evolution(7); describes the diverse transcriptional consequences of somatic mutation on splicing, expression levels, fusion genes and promoter activity(8,9); and evaluates a range of more-specialized features of cancer genomes(8,10-18).Peer reviewe

    Quality of life among adolescents living in residential youth care: do domain-specific self-esteem and psychopathology contribute?

    No full text
    PurposeMany adolescents living in residential youth care (RYC) institutions perceive their quality of life (QoL) to be low. Enhancing QoL is thus important, but little is known about the potential contributors to their QoL. Early interpersonal trauma and subsequent removal from home and repeated relocations to new placements are expected to affect mental health and self-esteem. We therefore investigated if domain-specific self-esteem contributed to QoL among adolescents living in RYC institutions over and beyond their levels of psychopathology.MethodsAll youth in Norwegian RYC institutions between the ages 12-23 years were invited to participate. Of a total of 98 RYC institutions, 86 participated, and 400 of 601 eligible youths were examined. The participants' primary contact completed the Child Behavior Checklist to assess psychopathology. The adolescents completed a revised version of the Self-Perception Profile for Adolescents and the questionnaire for measuring health-related quality of life in children and adolescents (KINDL-R).ResultsAfter adjusting for psychopathology, age, and gender, self-esteem domains uniquely explained 42% of the variance in Qol, where social acceptance (β = 0.57) and physical appearance (β = 0.25) domains significantly predicted concurrent QoL.ConclusionsThe self-esteem domains, social acceptance and physical appearance, add substantially to the explained variance in QoL among adolescents living in RYC institutions, over and beyond the levels of psychopathology. These self-esteem domains may be targets of intervention to improve QoL, in addition to treating their psychopathology
    corecore