109 research outputs found

    Determining the Shear Relaxation Modulus and Constitutive Models for Polyurea and Polyurea-Based Composite Materials from Dynamic Mechanical Testing Data

    Full text link
    Polyurea and polyurea-based composite materials are widely used due to their excellent mechanical properties. In order to facilitate large-scale computational studies for this group of materials, a robust and standard method is needed to extract their viscoelastic constitutive parameters. In this study, frequency-domain master curves which cover a wide range of frequencies are developed using the data of dynamic mechanical analysis through time-temperature superposition (TTS). The quality of the master curves is assessed both by Kramers-Kronig relations and by comparing with the ultrasonic wave testing data. Then the time-domain relaxation modulus is obtained by the high-resolution Prony series approximated from the relaxation spectrum. To reduce computational cost, 4 to 8-term Prony series are then fitted from the time-domain relaxation modulus for a limited frequency range of interest. Both the high and low-resolution Prony series are converted back to frequency domain to compare with the master curves developed by TTS and show good agreements. This method is not limited to polyurea and polyurea-based composites and it can be applied to other similar polymer systems as well

    Predicted contextual modulation varies with distance from pinwheel centers in the orientation preference map

    Get PDF
    In the primary visual cortex (V1) of some mammals, columns of neurons with the full range of orientation preferences converge at the center of a pinwheel-like arrangement, the ‘pinwheel center' (PWC). Because a neuron receives abundant inputs from nearby neurons, the neuron's position on the cortical map likely has a significant impact on its responses to the layout of orientations inside and outside its classical receptive field (CRF). To understand the positional specificity of responses, we constructed a computational model based on orientation preference maps in monkey V1 and hypothetical neuronal connections. The model simulations showed that neurons near PWCs displayed weaker but detectable orientation selectivity within their CRFs, and strongly reduced contextual modulation from extra-CRF stimuli, than neurons distant from PWCs. We suggest that neurons near PWCs robustly extract local orientation within their CRF embedded in visual scenes, and that contextual information is processed in regions distant from PWCs

    Challenges to adaptation: a fundamental concept for the shared socio-economic pathways and beyond

    Get PDF
    The framework for the new scenarios being developed for climate research calls for the development of a set of Shared Socioeconomic Pathways (SSPs), which are meant to differ in terms of their challenges to mitigation and challenges to adaptation. In order for the scenario process to fulfill its goals, the research and policy communities need to develop a shared understanding of these concepts. This paper focuses on challenges to adaptation. We begin by situating this new concept in the context of the rich literatures related to inter alia adaptation, vulnerability, and resilience. We argue that a proper characterization of challenges to adaptation requires a rich, exploration of the concept, which goes beyond mere description. This has a number of implications for the operationalization of the concept in the basic and extended versions of the SSPs. First, the elements comprising challenges to adaptation must include a wide range of socioeconomic and even some (non-climatic) biophysical factors. Second, careful consideration must be given to differences in these factors across scales, as well as cross-scale interactions. Third, any representation of the concept will require both quantitative and qualitative elements. The scenario framework offers the opportunity for the SSPs and full scenarios to be of greater value than has been the case in past exercises to both Integrated Assessment Modeling (IAM) and Impacts,Adaptation, and Vulnerability (IAV) researchers, but this will require a renegotiation of the traditional, primarily unidirectional relationship between the two communities

    FIV establishes a latent infection in feline peripheral blood CD4+ T lymphocytes in vivo during the asymptomatic phase of infection

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Feline immunodeficiency virus (FIV) is a lentivirus of cats that establishes a lifelong persistent infection with immunologic impairment.</p> <p>Results</p> <p>In an approximately 2 year-long experimental infection study, cats infected with a biological isolate of FIV clade C demonstrated undetectable plasma viral loads from 10 months post-infection onward. Viral DNA was detected in CD4+CD25+ and CD4+CD25- T cells isolated from infected cats whereas viral RNA was not detected at multiple time points during the early chronic phase of infection. Viral transcription could be reactivated in latently infected CD4+ T cells <it>ex vivo </it>as demonstrated by detectable FIV <it>gag </it>RNA and 2-long terminal repeat (LTR) circle junctions. Viral LTR and <it>gag </it>sequences amplified from peripheral blood mononuclear cells during early and chronic stages of infection demonstrated minimal to no viral sequence variation.</p> <p>Conclusions</p> <p>Collectively, these findings are consistent with FIV latency in peripheral blood CD4+ T cells isolated from chronically infected cats. The ability to isolate latently FIV-infected CD4+ T lymphocytes from FIV-infected cats provides a platform for the study of <it>in vivo </it>mechanisms of lentiviral latency.</p

    Identification and functional characterization of small non-coding RNAs in Xanthomonas oryzae pathovar oryzae

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Small non-coding RNAs (sRNAs) are regarded as important regulators in prokaryotes and play essential roles in diverse cellular processes. <it>Xanthomonas oryzae </it>pathovar <it>oryzae </it>(<it>Xoo</it>) is an important plant pathogenic bacterium which causes serious bacterial blight of rice. However, little is known about the number, genomic distribution and biological functions of sRNAs in <it>Xoo</it>.</p> <p>Results</p> <p>Here, we performed a systematic screen to identify sRNAs in the <it>Xoo </it>strain PXO99. A total of 850 putative non-coding RNA sequences originated from intergenic and gene antisense regions were identified by cloning, of which 63 were also identified as sRNA candidates by computational prediction, thus were considered as <it>Xoo </it>sRNA candidates. Northern blot hybridization confirmed the size and expression of 6 sRNA candidates and other 2 cloned small RNA sequences, which were then added to the sRNA candidate list. We further examined the expression profiles of the eight sRNAs in an <it>hfq </it>deletion mutant and found that two of them showed drastically decreased expression levels, and another exhibited an Hfq-dependent transcript processing pattern. Deletion mutants were obtained for seven of the Northern confirmed sRNAs, but none of them exhibited obvious phenotypes. Comparison of the proteomic differences between three of the ΔsRNA mutants and the wild-type strain by two-dimensional gel electrophoresis (2-DE) analysis showed that these sRNAs are involved in multiple physiological and biochemical processes.</p> <p>Conclusions</p> <p>We experimentally verified eight sRNAs in a genome-wide screen and uncovered three Hfq-dependent sRNAs in <it>Xoo</it>. Proteomics analysis revealed <it>Xoo </it>sRNAs may take part in various metabolic processes. Taken together, this work represents the first comprehensive screen and functional analysis of sRNAs in rice pathogenic bacteria and facilitates future studies on sRNA-mediated regulatory networks in this important phytopathogen.</p

    Die Stoffwechselwirkungen der Schilddrüsenhormone

    Get PDF

    Pan-cancer analysis of whole genomes

    Get PDF
    Cancer is driven by genetic change, and the advent of massively parallel sequencing has enabled systematic documentation of this variation at the whole-genome scale(1-3). Here we report the integrative analysis of 2,658 whole-cancer genomes and their matching normal tissues across 38 tumour types from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). We describe the generation of the PCAWG resource, facilitated by international data sharing using compute clouds. On average, cancer genomes contained 4-5 driver mutations when combining coding and non-coding genomic elements; however, in around 5% of cases no drivers were identified, suggesting that cancer driver discovery is not yet complete. Chromothripsis, in which many clustered structural variants arise in a single catastrophic event, is frequently an early event in tumour evolution; in acral melanoma, for example, these events precede most somatic point mutations and affect several cancer-associated genes simultaneously. Cancers with abnormal telomere maintenance often originate from tissues with low replicative activity and show several mechanisms of preventing telomere attrition to critical levels. Common and rare germline variants affect patterns of somatic mutation, including point mutations, structural variants and somatic retrotransposition. A collection of papers from the PCAWG Consortium describes non-coding mutations that drive cancer beyond those in the TERT promoter(4); identifies new signatures of mutational processes that cause base substitutions, small insertions and deletions and structural variation(5,6); analyses timings and patterns of tumour evolution(7); describes the diverse transcriptional consequences of somatic mutation on splicing, expression levels, fusion genes and promoter activity(8,9); and evaluates a range of more-specialized features of cancer genomes(8,10-18).Peer reviewe

    A bodhisattva-spirit-oriented counselling framework: inspired by Vimalakīrti wisdom

    Get PDF

    A proposal for calculating the no-observed-adverse-effect level (NOAEL) for organic compounds responsible for liver toxicity based on their physicochemical properties

    Full text link
    Objectives: Both environmental and occupational exposure limits are based on the no-observed-adverse-effect level (NOAEL), lowest-observed-adverse-effect level (LOAEL) or benchmark dose (BMD) deriving from epidemiological and experimental studies. The aim of this study is to investigate to what extent the NOAEL values for organic compounds responsible for liver toxicity calculated based on their physicochemical properties could be used for calculating occupational exposure limits. Material and Methods: The distribution coefficients from air to the liver (log Kliver) were calculated according to the Abraham solvation equation. NOAEL and LOAEL values for early effects in the liver were obtained from the literature data. The descriptors for Abraham's equation were found for 59 compounds, which were divided into 2 groups: "non-reactive" (alcohols, ketones, esters, ethers, aromatic and aliphatic hydrocarbons, amides) and "possibly reactive" (aldehydes, allyl compounds, amines, benzyl halides, halogenated hydrocarbons, acrylates). Results: The correlation coefficients between log-log K and log NOAEL for non-reactive and reactive compounds amounted to r = -0.8123 and r = -0.8045, respectively, and were statistically significant. It appears that the Abraham equation could be used to predict the NOAEL values for compounds lacking information concerning their liver toxicity. Conclusions: In view of the tendency to limit animal testing procedures, the method proposed in this paper can improve the practice of setting exposure guidelines for the unstudied compounds
    corecore