1,216 research outputs found

    Ni/HZSM-5 catalyst preparation by deposition-precipitation. Part 2. Catalytic hydrodeoxygenation reactions of lignin model compounds in organic and aqueous systems

    Get PDF
    Nickel metal supported on HZSM-5 (zeolite) is a promising catalyst for lignin depolymerization. In this work, the ability of catalysts prepared via deposition-precipitation (DP) to perform hydrodeoxygenation (HDO) on two lignin model compounds in organic and aqueous solvents was evaluated; guaiacol in dodecane and 2-phenoxy-1-phenylethanol (PPE) in aqueous solutions. All Ni/HZSM-5 catalysts were capable of guaiacol HDO into cyclohexane at 523 K. The role of the HZSM-5 acid sites was confirmed by comparison with Ni/SiO2 (inert support) which exhibited incomplete deoxygenation of guaiacol due to the inability to perform the cyclohexanol dehydration step. The catalyst prepared with 15 wt% Ni, a DP time of 16 h, and a calcination temperature of 673 K (Ni(15)/HZSM-5 DP16_Cal673), performed the guaiacol conversion with the greatest selectivity towards HDO products, with an intrinsic rate ratio (HDO rate to conversion rate) of 0.31, and 90% selectivity to cyclohexane. Catalytic activity and selectivity of Ni/HZSM-5 (15 wt%) in aqueous environments (water and 0.1 M NaOH solution) was confirmed using PPE reactions at 523 K. After 30 min reaction time in water, Ni/HZSM-5 exhibited ~100% conversion of PPE, and good yield of the desired products; ethylbenzene and phenol (~35% and 23% of initial carbon, respectively). Ni/HZSM-5 in NaOH solution resulted in significantly higher ring saturation compared to the Ni/HZSM-5 in water or the NaOH solution control

    Analysis of Alfven eigenmodes destabilization by energetic particles in TJ-II using a Landau-closure model

    Get PDF
    Alfven Eigenmodes (AE) can be destabilized by energetic particles in neutral beam injection (NBI) heated plasmas through inverse Landau damping and couplings with gap modes in the shear Alfven continua. We describe the linear evolution of the poloidal flux and the toroidal component of the vorticity in a full 3D system using the reduced MHD equations, density and parallel velocity moments for the energetic particles as well as the geodesic acoustic wave dynamics. A closure relation adds the Landau damping and resonant destabilization effects in the model. We apply the model to study the Alfven modes stability in TJ-II, performing a parametric analysis in a range of realistic values of energetic particle beta (beta(f)), ratios of thermal/Alfven velocities (V-th/V-A0), energetic particle density profiles and toroidal modes (n) including toroidal and helical couplings. The study predicts a large helical coupling between different toroidal modes and the destabilization of helical Alfven eigenmodes (HAE) with frequencies similar to the AE activity measured in TJ-II, between 50-400 kHz. The analysis has also revealed the destabilization of GAE (global Alfven eigenmodes), TAE (toroidal Alfven eigenmodes) and EPM (energetic particle modes). For the modes considered here, optimized TJ-II operations require a t profile in the range of [0.845, 0.979] to stabilize AEs in the inner and middle plasma. AEs in the plasma periphery cannot be fully stabilized, although for a configuration with t = [0.945, 1.079], only n = 7, 11, 15 AE are unstable with a growth rate 4 times smaller compared to the standard t = [1.54, 1.68] case and a frequency of 100 kHz. We reproduce the frequency sweeping evolution of the AE frequency observed in TJ-II as the t profile is varied. The AE frequency sweeping is caused by consecutive changes of the instability dominant modes between different helical families.This material based on work is supported both by the U.S. Department of Energy, Office of Science, under Contract DE-AC05-00OR22725 with UT-Battelle, LLC. This research was sponsored in part by the Ministerio of Economia y Competitividad of Spain under project no. ENE2015-68265-P. We also want to acknowledge Alexander Melnikov and the TJ-II group at CIEMAT for providing us the initial VMEC equilibria and useful discussions regarding the experimental phenomena

    The Self Model and the Conception of Biological Identity in Immunology

    Get PDF
    The self/non-self model, first proposed by F.M. Burnet, has dominated immunology for sixty years now. According to this model, any foreign element will trigger an immune reaction in an organism, whereas endogenous elements will not, in normal circumstances, induce an immune reaction. In this paper we show that the self/non-self model is no longer an appropriate explanation of experimental data in immunology, and that this inadequacy may be rooted in an excessively strong metaphysical conception of biological identity. We suggest that another hypothesis, one based on the notion of continuity, gives a better account of immune phenomena. Finally, we underscore the mapping between this metaphysical deflation from self to continuity in immunology and the philosophical debate between substantialism and empiricism about identity

    A Unified Algebraic Approach to Few and Many-Body Correlated Systems

    Full text link
    The present article is an extended version of the paper {\it Phys. Rev.} {\bf B 59}, R2490 (1999), where, we have established the equivalence of the Calogero-Sutherland model to decoupled oscillators. Here, we first employ the same approach for finding the eigenstates of a large class of Hamiltonians, dealing with correlated systems. A number of few and many-body interacting models are studied and the relationship between their respective Hilbert spaces, with that of oscillators, is found. This connection is then used to obtain the spectrum generating algebras for these systems and make an algebraic statement about correlated systems. The procedure to generate new solvable interacting models is outlined. We then point out the inadequacies of the present technique and make use of a novel method for solving linear differential equations to diagonalize the Sutherland model and establish a precise connection between this correlated system's wave functions, with those of the free particles on a circle. In the process, we obtain a new expression for the Jack polynomials. In two dimensions, we analyze the Hamiltonian having Laughlin wave function as the ground-state and point out the natural emergence of the underlying linear W1+W_{1+\infty} symmetry in this approach.Comment: 18 pages, Revtex format, To appear in Physical Review

    Central Pb+Pb Collisions at 158 A GeV/c Studied by Pion-Pion Interferometry

    Full text link
    Two-particle correlations have been measured for identified negative pions from central 158 AGeV Pb+Pb collisions and fitted radii of about 7 fm in all dimensions have been obtained. A multi-dimensional study of the radii as a function of kT is presented, including a full correction for the resolution effects of the apparatus. The cross term Rout-long of the standard fit in the Longitudinally CoMoving System (LCMS) and the vl parameter of the generalised Yano-Koonin fit are compatible with 0, suggesting that the source undergoes a boost invariant expansion. The shapes of the correlation functions in Qinv and Qspace have been analyzed in detail. They are not Gaussian but better represented by exponentials. As a consequence, fitting Gaussians to these correlation functions may produce different radii depending on the acceptance of the experimental setup used for the measurement.Comment: 13 pages including 10 figure

    Active Brownian Particles. From Individual to Collective Stochastic Dynamics

    Full text link
    We review theoretical models of individual motility as well as collective dynamics and pattern formation of active particles. We focus on simple models of active dynamics with a particular emphasis on nonlinear and stochastic dynamics of such self-propelled entities in the framework of statistical mechanics. Examples of such active units in complex physico-chemical and biological systems are chemically powered nano-rods, localized patterns in reaction-diffusion system, motile cells or macroscopic animals. Based on the description of individual motion of point-like active particles by stochastic differential equations, we discuss different velocity-dependent friction functions, the impact of various types of fluctuations and calculate characteristic observables such as stationary velocity distributions or diffusion coefficients. Finally, we consider not only the free and confined individual active dynamics but also different types of interaction between active particles. The resulting collective dynamical behavior of large assemblies and aggregates of active units is discussed and an overview over some recent results on spatiotemporal pattern formation in such systems is given.Comment: 161 pages, Review, Eur Phys J Special-Topics, accepte

    Search for Disoriented Chiral Condensates in 158 AGeV Pb+Pb Collisions

    Get PDF
    The restoration of chiral symmetry and its subsequent breaking through a phase transition has been predicted to create regions of Disoriented Chiral Condensates (DCC). This phenomenon has been predicted to cause anomalous fluctuations in the relative production of charged and neutral pions in high-energy hadronic and nuclear collisions. The WA98 experiment has been used to measure charged and photon multiplicities in the central region of 158 AGeV Pb+Pb collisions at the CERN SPS. In a sample of 212646 events, no clear DCC signal can be distinguished. Using a simple DCC model, we have set a 90% C.L. upper limit on the maximum DCC production allowed by the data.Comment: 20 Pages, LaTeX, uses elsart.cls, 8 eps figures included, submitted to Physics Letters

    Measurement of the Atmospheric Muon Spectrum from 20 to 3000 GeV

    Get PDF
    The absolute muon flux between 20 GeV and 3000 GeV is measured with the L3 magnetic muon spectrometer for zenith angles ranging from 0 degree to 58 degree. Due to the large exposure of about 150 m2 sr d, and the excellent momentum resolution of the L3 muon chambers, a precision of 2.3 % at 150 GeV in the vertical direction is achieved. The ratio of positive to negative muons is studied between 20 GeV and 500 GeV, and the average vertical muon charge ratio is found to be 1.285 +- 0.003 (stat.) +- 0.019 (syst.).Comment: Total 32 pages, 9Figure

    Heavy quarkonium: progress, puzzles, and opportunities

    Get PDF
    A golden age for heavy quarkonium physics dawned a decade ago, initiated by the confluence of exciting advances in quantum chromodynamics (QCD) and an explosion of related experimental activity. The early years of this period were chronicled in the Quarkonium Working Group (QWG) CERN Yellow Report (YR) in 2004, which presented a comprehensive review of the status of the field at that time and provided specific recommendations for further progress. However, the broad spectrum of subsequent breakthroughs, surprises, and continuing puzzles could only be partially anticipated. Since the release of the YR, the BESII program concluded only to give birth to BESIII; the BB-factories and CLEO-c flourished; quarkonium production and polarization measurements at HERA and the Tevatron matured; and heavy-ion collisions at RHIC have opened a window on the deconfinement regime. All these experiments leave legacies of quality, precision, and unsolved mysteries for quarkonium physics, and therefore beg for continuing investigations. The plethora of newly-found quarkonium-like states unleashed a flood of theoretical investigations into new forms of matter such as quark-gluon hybrids, mesonic molecules, and tetraquarks. Measurements of the spectroscopy, decays, production, and in-medium behavior of c\bar{c}, b\bar{b}, and b\bar{c} bound states have been shown to validate some theoretical approaches to QCD and highlight lack of quantitative success for others. The intriguing details of quarkonium suppression in heavy-ion collisions that have emerged from RHIC have elevated the importance of separating hot- and cold-nuclear-matter effects in quark-gluon plasma studies. This review systematically addresses all these matters and concludes by prioritizing directions for ongoing and future efforts.Comment: 182 pages, 112 figures. Editors: N. Brambilla, S. Eidelman, B. K. Heltsley, R. Vogt. Section Coordinators: G. T. Bodwin, E. Eichten, A. D. Frawley, A. B. Meyer, R. E. Mitchell, V. Papadimitriou, P. Petreczky, A. A. Petrov, P. Robbe, A. Vair

    Shrinking a large dataset to identify variables associated with increased risk of Plasmodium falciparum infection in Western Kenya

    Get PDF
    Large datasets are often not amenable to analysis using traditional single-step approaches. Here, our general objective was to apply imputation techniques, principal component analysis (PCA), elastic net and generalized linear models to a large dataset in a systematic approach to extract the most meaningful predictors for a health outcome. We extracted predictors for Plasmodium falciparum infection, from a large covariate dataset while facing limited numbers of observations, using data from the People, Animals, and their Zoonoses (PAZ) project to demonstrate these techniques: data collected from 415 homesteads in western Kenya, contained over 1500 variables that describe the health, environment, and social factors of the humans, livestock, and the homesteads in which they reside. The wide, sparse dataset was simplified to 42 predictors of P. falciparum malaria infection and wealth rankings were produced for all homesteads. The 42 predictors make biological sense and are supported by previous studies. This systematic data-mining approach we used would make many large datasets more manageable and informative for decision-making processes and health policy prioritization
    corecore