52 research outputs found

    Convalescent Pulmonary Dysfunction Following Hantavirus Pulmonary Syndrome in Panama and the United States

    Get PDF
    The objective of this study was to document persistent pulmonary symptoms and pulmonary function abnormalities in adults surviving hantavirus pulmonary syndrome (HPS). Acute infection by most hantaviruses result in mortality rates of 25–35%, while in Panama the mortality rate of 10% is contrasted by an unusually high incidence. In all types of HPS, the viral prodrome, cardiopulmonary phase due to massive pulmonary capillary leak syndrome, and spontaneous diuresis are followed by a convalescent phase with exertional dyspnea for 3–4 weeks, but the frequency of persistent symptoms is not known. In this observational study of a convenience sample, 14 survivors of HPS caused by Choclo virus infection in Panama and 9 survivors of HPS caused by Sin Nombre virus infection in New Mexico completed a questionnaire and pulmonary function tests up to 8 years after infection. In both groups, exertional dyspnea persisted for 1–2 years after acute infection in 43% (Panama) and 77% (New Mexico) of survivors surveyed. Reduction in midexpiratory flows (FEF25–75%), increased residual volume (RV), and reduced diffusion capacity (DLCO/VA) also were common in both populations; but the severity of reduced expiratory flow did not correlate with exertional dyspnea. Symptoms referable to previous hantavirus infection had resolved within 3 years of acute infection in most but not all patients in the Panama group. Temporary exertional dyspnea and reduced expiratory flow are common in early convalescence after HPS but resolves in almost all patients

    Identification of the CRE-1 Cellulolytic Regulon in Neurospora crassa

    Get PDF
    Background: In filamentous ascomycete fungi, the utilization of alternate carbon sources is influenced by the zinc finger transcription factor CreA/CRE-1, which encodes a carbon catabolite repressor protein homologous to Mig1 from Saccharomyces cerevisiae. In Neurospora crassa, deletion of cre-1 results in increased secretion of amylase and b-galactosidase. Methodology/Principal Findings: Here we show that a strain carrying a deletion of cre-1 has increased cellulolytic activity and increased expression of cellulolytic genes during growth on crystalline cellulose (Avicel). Constitutive expression of cre-1 complements the phenotype of a N. crassa Dcre-1 strain grown on Avicel, and also results in stronger repression of cellulolytic protein secretion and enzyme activity. We determined the CRE-1 regulon by investigating the secretome and transcriptome of a Dcre-1 strain as compared to wild type when grown on Avicel versus minimal medium. Chromatin immunoprecipitation-PCR of putative target genes showed that CRE-1 binds to only some adjacent 59-SYGGRG-39 motifs, consistent with previous findings in other fungi, and suggests that unidentified additional regulatory factors affect CRE-1 binding to promoter regions. Characterization of 30 mutants containing deletions in genes whose expression level increased in a Dcre-1 strain under cellulolytic conditions identified novel genes that affect cellulase activity and protein secretion

    Somatic p16INK4a loss accelerates melanomagenesis

    Get PDF
    Loss of p16INK4a–RB and ARF–p53 tumor suppressor pathways, as well as activation of RAS–RAF signaling, is seen in a majority of human melanomas. Although heterozygous germline mutations of p16INK4a are associated with familial melanoma, most melanomas result from somatic genetic events: often p16INK4a loss and N-RAS or B-RAF mutational activation, with a minority possessing alternative genetic alterations such as activating mutations in K-RAS and/or p53 inactivation. To generate a murine model of melanoma featuring some of these somatic genetic events, we engineered a novel conditional p16INK4a-null allele and combined this allele with a melanocyte-specific, inducible CRE recombinase strain, a conditional p53-null allele and a loxP-stop-loxP activatable oncogenic K-Ras allele. We found potent synergy between melanocyte-specific activation of K-Ras and loss of p16INK4a and/or p53 in melanomagenesis. Mice harboring melanocyte-specific activated K-Ras and loss of p16INK4a and/or p53 developed invasive, unpigmented and nonmetastatic melanomas with short latency and high penetrance. In addition, the capacity of these somatic genetic events to rapidly induce melanomas in adult mice suggests that melanocytes remain susceptible to transformation throughout adulthood

    Cardiomyocyte Specific Ablation of p53 Is Not Sufficient to Block Doxorubicin Induced Cardiac Fibrosis and Associated Cytoskeletal Changes

    Get PDF
    Doxorubicin (Dox) is an anthracycline used to effectively treat several forms of cancer. Unfortunately, the use of Dox is limited due to its association with cardiovascular complications which are manifested as acute and chronic cardiotoxicity. The pathophysiological mechanism of Dox induced cardiotoxicity appears to involve increased expression of the tumor suppressor protein p53 in cardiomyocytes, followed by cellular apoptosis. It is not known whether downregulation of p53 expression in cardiomyocytes would result in decreased rates of myocardial fibrosis which occurs in response to cardiomyocyte loss. Further, it is not known whether Dox can induce perivascular necrosis and associated fibrosis in the heart. In this study we measured the effects of acute Dox treatment on myocardial and perivascular apoptosis and fibrosis in a conditional knockout (CKO) mouse model system which harbours inactive p53 alleles specifically in cardiomyocytes. CKO mice treated with a single dose of Dox (20 mg/kg), did not display lower levels of myocardial apoptosis or reactive oxygen and nitrogen species (ROS/RNS) compared to control mice with intact p53 alleles. Interestingly, CKO mice also displayed higher levels of interstitial and perivascular fibrosis compared to controls 3 or 7 days after Dox treatment. Additionally, the decrease in levels of the microtubule protein α-tubulin, which occurs in response to Dox treatment, was not prevented in CKO mice. Overall, these results indicate that selective loss of p53 in cardiomyocytes is not sufficient to prevent Dox induced myocardial ROS/RNS generation, apoptosis, interstitial fibrosis and perivascular fibrosis. Further, these results support a role for p53 independent apoptotic pathways leading to Dox induced myocardial damage and highlight the importance of vascular lesions in Dox induced cardiotoxicity

    Pan-cancer analysis of whole genomes

    Get PDF
    Cancer is driven by genetic change, and the advent of massively parallel sequencing has enabled systematic documentation of this variation at the whole-genome scale(1-3). Here we report the integrative analysis of 2,658 whole-cancer genomes and their matching normal tissues across 38 tumour types from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). We describe the generation of the PCAWG resource, facilitated by international data sharing using compute clouds. On average, cancer genomes contained 4-5 driver mutations when combining coding and non-coding genomic elements; however, in around 5% of cases no drivers were identified, suggesting that cancer driver discovery is not yet complete. Chromothripsis, in which many clustered structural variants arise in a single catastrophic event, is frequently an early event in tumour evolution; in acral melanoma, for example, these events precede most somatic point mutations and affect several cancer-associated genes simultaneously. Cancers with abnormal telomere maintenance often originate from tissues with low replicative activity and show several mechanisms of preventing telomere attrition to critical levels. Common and rare germline variants affect patterns of somatic mutation, including point mutations, structural variants and somatic retrotransposition. A collection of papers from the PCAWG Consortium describes non-coding mutations that drive cancer beyond those in the TERT promoter(4); identifies new signatures of mutational processes that cause base substitutions, small insertions and deletions and structural variation(5,6); analyses timings and patterns of tumour evolution(7); describes the diverse transcriptional consequences of somatic mutation on splicing, expression levels, fusion genes and promoter activity(8,9); and evaluates a range of more-specialized features of cancer genomes(8,10-18).Peer reviewe

    Guidelines for the reliable use of high throughput sequencing technologies to detect plant pathogens and pests

    Get PDF
    High-throughput sequencing (HTS) technologies have the potential to become one of the most significant advances in molecular diagnostics. Their use by researchers to detect and characterize plant pathogens and pests has been growing steadily for more than a decade and they are now envisioned as a routine diagnostic test to be deployed by plant pest diagnostics laboratories. Nevertheless, HTS technologies and downstream bioinformatics analysis of the generated datasets represent a complex process including many steps whose reliability must be ensured. The aim of the present guidelines is to provide recommendations for researchers and diagnosticians aiming to reliably use HTS technologies to detect plant pathogens and pests. These guidelines are generic and do not depend on the sequencing technology or platform. They cover all the adoption processes of HTS technologies from test selection to test validation as well as their routine implementation. A special emphasis is given to key elements to be considered: undertaking a risk analysis, designing sample panels for validation, using proper controls, evaluating performance criteria, confirming and interpreting results. These guidelines cover any HTS test used for the detection and identification of any plant pest (viroid, virus, bacteria, phytoplasma, fungi and fungus-like protists, nematodes, arthropods, plants) from any type of matrix. Overall, their adoption by diagnosticians and researchers should greatly improve the reliability of pathogens and pest diagnostics and foster the use of HTS technologies in plant health
    corecore