54 research outputs found

    Crystal Structure of HIV-1 gp41 Including Both Fusion Peptide and Membrane Proximal External Regions

    Get PDF
    The HIV-1 envelope glycoprotein (Env) composed of the receptor binding domain gp120 and the fusion protein subunit gp41 catalyzes virus entry and is a major target for therapeutic intervention and for neutralizing antibodies. Env interactions with cellular receptors trigger refolding of gp41, which induces close apposition of viral and cellular membranes leading to membrane fusion. The energy released during refolding is used to overcome the kinetic barrier and drives the fusion reaction. Here, we report the crystal structure at 2 Å resolution of the complete extracellular domain of gp41 lacking the fusion peptide and the cystein-linked loop. Both the fusion peptide proximal region (FPPR) and the membrane proximal external region (MPER) form helical extensions from the gp41 six-helical bundle core structure. The lack of regular coiled-coil interactions within FPPR and MPER splay this end of the structure apart while positioning the fusion peptide towards the outside of the six-helical bundle and exposing conserved hydrophobic MPER residues. Unexpectedly, the section of the MPER, which is juxtaposed to the transmembrane region (TMR), bends in a 90°-angle sideward positioning three aromatic side chains per monomer for membrane insertion. We calculate that this structural motif might facilitate the generation of membrane curvature on the viral membrane. The presence of FPPR and MPER increases the melting temperature of gp41 significantly in comparison to the core structure of gp41. Thus, our data indicate that the ordered assembly of FPPR and MPER beyond the core contributes energy to the membrane fusion reaction. Furthermore, we provide the first structural evidence that part of MPER will be membrane inserted within trimeric gp41. We propose that this framework has important implications for membrane bending on the viral membrane, which is required for fusion and could provide a platform for epitope and lipid bilayer recognition for broadly neutralizing gp41 antibodies

    Association of IL1B -511C/-31T haplotype and Helicobacter pylori vacA genotypes with gastric ulcer and chronic gastritis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The association between proinflammatory cytokine gene polymorphisms and gastric diseases related to <it>Helicobacter pylori </it>varies by population and geographic area.</p> <p>Our objective was to determine if the <it>IL-1B </it>-<it>511 T>C </it>and -<it>31 C>T </it>polymorphisms and <it>H. pylori vacA </it>genotypes are associated with risk of chronic gastritis and gastric ulcer in a Mexican population.</p> <p>Methods</p> <p>We conducted endoscopic studies in 128 patients with symptoms of dyspepsia. We took two biopsies from the body, antrum, or ulcer edge from each patient, and classified our histopathological findings according to the Sydney System. <it>H. pylori </it>infection and <it>vacA </it>genotyping were accomplished via PCR from total DNA of the gastric biopsies. We confirmed the presence of anti-<it>H. pylori </it>serum IgG and IgM in 102 control subjects. In both case subjects and control subjects, the <it>IL-1B </it>-<it>511 T>C </it>polymorphism was genotyped by PCR-RFLPs and the <it>IL-1B -31 C>T </it>polymorphism was genotyped by pyrosequencing.</p> <p>Results</p> <p>Sixty-two point seven (62.7%) of the 102 control subjects were <it>H. pylori-</it>seropositive. Among the case subjects, 100 were diagnosed with chronic gastritis and 28 with gastric ulcer. We found that 77% of the patients with chronic gastritis and 85.7% of the patients with gastric ulcer were <it>H. pylori-</it>positive. The predominant <it>H. pylori </it>genotype was <it>vacA s1m1 </it>(58.4%) and the most frequent subtype was <it>vacA s1</it>. The -<it>511 TC</it>, (rs16944 -511 T>C) genotype and the -<it>511C </it>allele were associated with chronic gastritis (OR = 3.1, 95% CI = 1.4-6.8 and OR = 3.0, 95% CI = 1.4-6.0, respectively). The subjects carrying -<it>31T </it>(rs1143627 -31 C>T) were found to be at a higher risk of having chronic gastritis (OR = 2.8, 95% CI = 1.3-5.8). The <it>IL-1B </it>-<it>511C/-31T </it>haplotype was associated with chronic gastritis (OR = 2.1, 95% CI = 1.2-3.8) but not with gastric ulcer.</p> <p>Conclusions</p> <p>The <it>H. pylori vacA </it>genotypes identified herein were similar to those reported for other regions of Mexico. The <it>vacA s1m1 </it>genotype was not associated with gastric ulcer. In the southern Mexican population, the <it>IL-1B -511C </it>and -<it>31T </it>alleles and the -<it>511C/-31T </it>and -<it>511T/-31T </it>haplotypes are associated with increased risk of chronic gastritis and gastric ulcer.</p

    Pan-cancer analysis of whole genomes

    Get PDF
    Cancer is driven by genetic change, and the advent of massively parallel sequencing has enabled systematic documentation of this variation at the whole-genome scale(1-3). Here we report the integrative analysis of 2,658 whole-cancer genomes and their matching normal tissues across 38 tumour types from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). We describe the generation of the PCAWG resource, facilitated by international data sharing using compute clouds. On average, cancer genomes contained 4-5 driver mutations when combining coding and non-coding genomic elements; however, in around 5% of cases no drivers were identified, suggesting that cancer driver discovery is not yet complete. Chromothripsis, in which many clustered structural variants arise in a single catastrophic event, is frequently an early event in tumour evolution; in acral melanoma, for example, these events precede most somatic point mutations and affect several cancer-associated genes simultaneously. Cancers with abnormal telomere maintenance often originate from tissues with low replicative activity and show several mechanisms of preventing telomere attrition to critical levels. Common and rare germline variants affect patterns of somatic mutation, including point mutations, structural variants and somatic retrotransposition. A collection of papers from the PCAWG Consortium describes non-coding mutations that drive cancer beyond those in the TERT promoter(4); identifies new signatures of mutational processes that cause base substitutions, small insertions and deletions and structural variation(5,6); analyses timings and patterns of tumour evolution(7); describes the diverse transcriptional consequences of somatic mutation on splicing, expression levels, fusion genes and promoter activity(8,9); and evaluates a range of more-specialized features of cancer genomes(8,10-18).Peer reviewe

    Control of adult neurogenesis by programmed cell death in the mammalian brain

    Full text link

    All about neosporosis in Brazil

    Full text link
    corecore