18 research outputs found
Pan-cancer analysis of whole genomes
Cancer is driven by genetic change, and the advent of massively parallel sequencing has enabled systematic documentation of this variation at the whole-genome scale(1-3). Here we report the integrative analysis of 2,658 whole-cancer genomes and their matching normal tissues across 38 tumour types from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). We describe the generation of the PCAWG resource, facilitated by international data sharing using compute clouds. On average, cancer genomes contained 4-5 driver mutations when combining coding and non-coding genomic elements; however, in around 5% of cases no drivers were identified, suggesting that cancer driver discovery is not yet complete. Chromothripsis, in which many clustered structural variants arise in a single catastrophic event, is frequently an early event in tumour evolution; in acral melanoma, for example, these events precede most somatic point mutations and affect several cancer-associated genes simultaneously. Cancers with abnormal telomere maintenance often originate from tissues with low replicative activity and show several mechanisms of preventing telomere attrition to critical levels. Common and rare germline variants affect patterns of somatic mutation, including point mutations, structural variants and somatic retrotransposition. A collection of papers from the PCAWG Consortium describes non-coding mutations that drive cancer beyond those in the TERT promoter(4); identifies new signatures of mutational processes that cause base substitutions, small insertions and deletions and structural variation(5,6); analyses timings and patterns of tumour evolution(7); describes the diverse transcriptional consequences of somatic mutation on splicing, expression levels, fusion genes and promoter activity(8,9); and evaluates a range of more-specialized features of cancer genomes(8,10-18).Peer reviewe
Trypanosoma cruzi trans-sialidase initiates a program independent of the transcription factors RORγt and Ahr that leads to IL-17 production by activated B cells
Here we identified B cells as a major source of rapid, innate-like production of interleukin 17 (IL-17) in vivo in response to infection with Trypanosoma cruzi. IL-17+ B cells had a plasmablast phenotype, outnumbered cells of the TH17 subset of helper T cells and were required for an optimal response to this pathogen. With both mouse and human primary B cells, we found that exposure to parasite-derived trans-sialidase in vitro was sufficient to trigger modification of the cell-surface mucin CD45, which led to signaling dependent on the kinase Btk and production of IL-17A or IL-17F via a transcriptional program independent of the transcription factors RORγt and Ahr. Our combined data suggest that the generation of IL-17+ B cells may be a previously unappreciated feature of innate immune responses required for pathogen control or IL-17-mediated autoimmunity.Fil: Bermejo, Daniela Andrea. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigaciones en Bioquímica Clínica e Inmunología; ArgentinaFil: Jackson, Shaun W.. University of Washington; Estados UnidosFil: Gorosito Serran, Melisa. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigaciones en Bioquímica Clínica e Inmunología; ArgentinaFil: Acosta Rodriguez, Eva Virginia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigaciones en Bioquímica Clínica e Inmunología; ArgentinaFil: Amezcua Vesely, Maria Carolina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigaciones en Bioquímica Clínica e Inmunología; ArgentinaFil: Sather, Blythe D.. University of Washington; Estados UnidosFil: Singh, Akhilesh K.. University of Washington; Estados UnidosFil: Khim, Socheath. University of Washington; Estados UnidosFil: Mucci, Juan Sebastián. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas; ArgentinaFil: Liggitt, Denny. University of Washington; Estados UnidosFil: Campetella, Oscar Eduardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas; ArgentinaFil: Oukka, Mohamed. University of Washington; Estados UnidosFil: Gruppi, Adriana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigaciones en Bioquímica Clínica e Inmunología; ArgentinaFil: Rawlings, David J.. University of Washington; Estados Unido
Cardiorenal syndrome-current understanding and future perspectives
Combined cardiac and renal dysfunction has gained considerable attention. Hypotheses about its pathogenesis have been formulated, albeit based on a relatively small body of experimental studies, and a clinical classification system has been proposed. Cardiorenal syndrome, as presently defined, comprises a heterogeneous group of acute and chronic clinical conditions, in which the failure of one organ ( heart or kidney) initiates or aggravates failure of the other. This conceptual framework, however, has two major drawbacks: the first is that, despite worldwide interest, universally accepted definitions of cardiorenal syndrome are lacking and characterization of heart and kidney failure is not uniform. This lack of consistency hampers experimental studies on mechanisms of the disease. The second is that, although progress has been made in developing hypotheses for the pathogenesis of cardiorenal syndrome, these initiatives are at an impasse. No hierarchy has been identified in the myriad of haemodynamic and non-haemodynamic factors mediating cardiorenal syndrome. This Review discusses current understanding of cardiorenal syndrome and provides a roadmap for further studies in this field. Ultimately, discussion of the definition and characterization issues and of the lack of organization among pathogenetic factors is hoped to contribute to further advancement of this complex field