91 research outputs found

    Oscillations by Minimal Bacterial Suicide Circuits Reveal Hidden Facets of Host-Circuit Physiology

    Get PDF
    Synthetic biology seeks to enable programmed control of cellular behavior though engineered biological systems. These systems typically consist of synthetic circuits that function inside, and interact with, complex host cells possessing pre-existing metabolic and regulatory networks. Nevertheless, while designing systems, a simple well-defined interface between the synthetic gene circuit and the host is frequently assumed. We describe the generation of robust but unexpected oscillations in the densities of bacterium Escherichia coli populations by simple synthetic suicide circuits containing quorum components and a lysis gene. Contrary to design expectations, oscillations required neither the quorum sensing genes (luxR and luxI) nor known regulatory elements in the PluxI promoter. Instead, oscillations were likely due to density-dependent plasmid amplification that established a population-level negative feedback. A mathematical model based on this mechanism captures the key characteristics of oscillations, and model predictions regarding perturbations to plasmid amplification were experimentally validated. Our results underscore the importance of plasmid copy number and potential impact of “hidden interactions” on the behavior of engineered gene circuits - a major challenge for standardizing biological parts. As synthetic biology grows as a discipline, increasing value may be derived from tools that enable the assessment of parts in their final context

    An Environment-Sensitive Synthetic Microbial Ecosystem

    Get PDF
    Microbial ecosystems have been widely used in industrial production, but the inter-relationships of organisms within them haven't been completely clarified due to complex composition and structure of natural microbial ecosystems. So it is challenging for ecologists to get deep insights on how ecosystems function and interplay with surrounding environments. But the recent progresses in synthetic biology show that construction of artificial ecosystems where relationships of species are comparatively clear could help us further uncover the meadow of those tiny societies. By using two quorum-sensing signal transduction circuits, this research designed, simulated and constructed a synthetic ecosystem where various population dynamics formed by changing environmental factors. Coherent experimental data and mathematical simulation in our study show that different antibiotics levels and initial cell densities can result in correlated population dynamics such as extinction, obligatory mutualism, facultative mutualism and commensalism. This synthetic ecosystem provides valuable information for addressing questions in ecology and may act as a chassis for construction of more complex microbial ecosystems

    Characterizing Hospital Workers' Willingness to Respond to a Radiological Event

    Get PDF
    Terrorist use of a radiological dispersal device (RDD, or "dirty bomb"), which combines a conventional explosive device with radiological materials, is among the National Planning Scenarios of the United States government. Understanding employee willingness to respond is critical for planning experts. Previous research has demonstrated that perception of threat and efficacy is key in the assessing willingness to respond to a RDD event.An anonymous online survey was used to evaluate the willingness of hospital employees to respond to a RDD event. Agreement with a series of belief statements was assessed, following a methodology validated in previous work. The survey was available online to all 18,612 employees of the Johns Hopkins Hospital from January to March 2009.Surveys were completed by 3426 employees (18.4%), whose demographic distribution was similar to overall hospital staff. 39% of hospital workers were not willing to respond to a RDD scenario if asked but not required to do so. Only 11% more were willing if required. Workers who were hesitant to agree to work additional hours when required were 20 times less likely to report during a RDD emergency. Respondents who perceived their peers as likely to report to work in a RDD emergency were 17 times more likely to respond during a RDD event if asked. Only 27.9% of the hospital employees with a perception of low efficacy declared willingness to respond to a severe RDD event. Perception of threat had little impact on willingness to respond among hospital workers.Radiological scenarios such as RDDs are among the most dreaded emergency events yet studied. Several attitudinal indicators can help to identify hospital employees unlikely to respond. These risk-perception modifiers must then be addressed through training to enable effective hospital response to a RDD event

    A Phosphoproteomic Approach towards the Understanding of the Role of TGF-β in Trypanosoma cruzi Biology

    Get PDF
    Transforming growth factor beta (TGF-β) plays a pivotal role in Chagas disease, not only in the development of chagasic cardiomyopathy, but also in many stages of the T. cruzi life cycle and survival in the host cell environment. The intracellular signaling pathways utilized by T. cruzi to regulate these mechanisms remain unknown. To identify parasite proteins involved in the TGF-β response, we utilized a combined approach of two-dimensional gel electrophoresis (2DE) analysis and mass spectrometry (MS) protein identification. Signaling via TGF-β is dependent on events of phosphorylation, which is one of the most relevant and ubiquitous post-translational modifications for the regulation of gene expression, and especially in trypanosomatids, since they lack several transcriptional control mechanisms. Here we show a kinetic view of T. cruzi epimastigotes (Y strain) incubated with TGF-β for 1, 5, 30 and 60 minutes, which promoted a remodeling of the parasite phosphorylation network and protein expression pattern. The altered molecules are involved in a variety of cellular processes, such as proteolysis, metabolism, heat shock response, cytoskeleton arrangement, oxidative stress regulation, translation and signal transduction. A total of 75 protein spots were up- or down-regulated more than twofold after TGF-β treatment, and from these, 42 were identified by mass spectrometry, including cruzipain–the major T. cruzi papain-like cysteine proteinase that plays an important role in invasion and participates in the escape mechanisms used by the parasite to evade the host immune system. In our study, we observed that TGF-β addition favored epimastigote proliferation, corroborating 2DE data in which proteins previously described to be involved in this process were positively stimulated by TGF-β

    Commercial Nucleic-Acid Amplification Tests for Diagnosis of Pulmonary Tuberculosis in Respiratory Specimens: Meta-Analysis and Meta-Regression

    Get PDF
    BACKGROUND: Hundreds of studies have evaluated the diagnostic accuracy of nucleic-acid amplification tests (NAATs) for tuberculosis (TB). Commercial tests have been shown to give more consistent results than in-house assays. Previous meta-analyses have found high specificity but low and highly variable estimates of sensitivity. However, reasons for variability in study results have not been adequately explored. We performed a meta-analysis on the accuracy of commercial NAATs to diagnose pulmonary TB and meta-regression to identify factors that are associated with higher accuracy. METHODOLOGY/PRINCIPAL FINDINGS: We identified 2948 citations from searching the literature. We found 402 articles that met our eligibility criteria. In the final analysis, 125 separate studies from 105 articles that reported NAAT results from respiratory specimens were included. The pooled sensitivity was 0.85 (range 0.36-1.00) and the pooled specificity was 0.97 (range 0.54-1.00). However, both measures were significantly heterogeneous (p<.001). We performed subgroup and meta-regression analyses to identify sources of heterogeneity. Even after stratifying by type of commercial test, we could not account for the variability. In the meta-regression, the threshold effect was significant (p = .01) and the use of other respiratory specimens besides sputum was associated with higher accuracy. CONCLUSIONS/SIGNIFICANCE: The sensitivity and specificity estimates for commercial NAATs in respiratory specimens were highly variable, with sensitivity lower and more inconsistent than specificity. Thus, summary measures of diagnostic accuracy are not clinically meaningful. The use of different cut-off values and the use of specimens other than sputum could explain some of the observed heterogeneity. Based on these observations, commercial NAATs alone cannot be recommended to replace conventional tests for diagnosing pulmonary TB. Improvements in diagnostic accuracy, particularly sensitivity, need to be made in order for this expensive technology to be worthwhile and beneficial in low-resource countries

    Pan-cancer analysis of whole genomes

    Get PDF
    Cancer is driven by genetic change, and the advent of massively parallel sequencing has enabled systematic documentation of this variation at the whole-genome scale(1-3). Here we report the integrative analysis of 2,658 whole-cancer genomes and their matching normal tissues across 38 tumour types from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). We describe the generation of the PCAWG resource, facilitated by international data sharing using compute clouds. On average, cancer genomes contained 4-5 driver mutations when combining coding and non-coding genomic elements; however, in around 5% of cases no drivers were identified, suggesting that cancer driver discovery is not yet complete. Chromothripsis, in which many clustered structural variants arise in a single catastrophic event, is frequently an early event in tumour evolution; in acral melanoma, for example, these events precede most somatic point mutations and affect several cancer-associated genes simultaneously. Cancers with abnormal telomere maintenance often originate from tissues with low replicative activity and show several mechanisms of preventing telomere attrition to critical levels. Common and rare germline variants affect patterns of somatic mutation, including point mutations, structural variants and somatic retrotransposition. A collection of papers from the PCAWG Consortium describes non-coding mutations that drive cancer beyond those in the TERT promoter(4); identifies new signatures of mutational processes that cause base substitutions, small insertions and deletions and structural variation(5,6); analyses timings and patterns of tumour evolution(7); describes the diverse transcriptional consequences of somatic mutation on splicing, expression levels, fusion genes and promoter activity(8,9); and evaluates a range of more-specialized features of cancer genomes(8,10-18).Peer reviewe

    Primary neuroendocrine neoplasm of the esophagus – Report of 14 cases from a single institute and review of the literature

    Full text link
    corecore