120 research outputs found

    Neurotrophic Factors and Major Depressive Disorder

    Get PDF

    Low-Theta Electroencephalography Coherence Predicts Cigarette Craving in Nicotine Addiction

    Get PDF
    Addicts are often vulnerable to drug use in the presence of drug cues, which elicit significant drug cue reactivity. Mounting neuroimaging evidence suggests an association between functional magnetic resonance imaging connectivity networks and smoking cue reactivity; however, there is still little understanding of the electroencephalography (EEG) coherence basis of smoking cue reactivity. We therefore designed two independent experiments wherein nicotine-dependent smokers performed a smoking cue reactivity task during EEG recording. Experiment I showed that a low-theta EEG coherence network occurring 400–600 ms after onset during long-range (mainly between frontal and parieto-occipital) scalp regions, which was involved in smoking cue reactivity. Moreover, the average coherence of this network was significantly correlated with participants’ level of cigarette craving. In experiment II, we tested an independent group of smokers and demonstrated that the low-theta coherence network significantly predicted changes in individuals’ cigarette craving. Thus, the low-theta EEG coherence in smokers’ brains might be a biomarker of smoking cue reactivity and can predict addiction behavior

    CT findings of COVID-19 in follow-up: comparison between progression and recovery

    Get PDF
    PURPOSEWe aimed to retrospectively analyze the imaging changes detected in the follow-up of coronavirus disease 2019 (COVID-19) patients on thin-section computed tomography (CT).METHODSWe included 54 patients diagnosed with COVID-19. The mean interval between the initial and follow-up CT scans was 7.82±3.74 days. Patients were divided into progression and recovery groups according to their outcomes. We evaluated CT images in terms of distribution of lesions and imaging manifestations. The manifestations included ground-glass opacity (GGO), crazy-paving pattern, consolidation, irregular line, and air bronchogram sign.RESULTSCOVID-19 lesions showed mainly subpleural distribution, which was accompanied by bronchovascular bundle distribution in nearly 30% of the patients. The lower lobes of both lungs were the most commonly involved. In the follow-up, the progression group showed more involvement of the upper lobe of the left lung than the recovery group. GGO was the most common sign. As the disease progressed, round GGO decreased and patchy GGO increased. On follow-up CT, consolidation increased in the progression group while decreasing in the recovery group. Air bronchogram sign was more commonly observed at the initial examination (90.9%) than at follow-up (30%) in the recovery group, but there was no significant change in the progression group. Pleural effusion and lymphadenopathy were absent in the initial examination, but pleural effusion was observed in three cases after follow-up.CONCLUSIONAs COVID-19 progressed, round GGOs tended to evolve into patchy GGOs, consolidation increased, and pleural effusion could be occasionally observed. As COVID-19 resolved, the crazy-paving pattern and air bronchogram significantly decreased

    An Updated Search of Steady TeV γ\gamma-Ray Point Sources in Northern Hemisphere Using the Tibet Air Shower Array

    Full text link
    Using the data taken from Tibet II High Density (HD) Array (1997 February-1999 September) and Tibet-III array (1999 November-2005 November), our previous northern sky survey for TeV γ\gamma-ray point sources has now been updated by a factor of 2.8 improved statistics. From 0.00.0^{\circ} to 60.060.0^{\circ} in declination (Dec) range, no new TeV γ\gamma-ray point sources with sufficiently high significance were identified while the well-known Crab Nebula and Mrk421 remain to be the brightest TeV γ\gamma-ray sources within the field of view of the Tibet air shower array. Based on the currently available data and at the 90% confidence level (C.L.), the flux upper limits for different power law index assumption are re-derived, which are approximately improved by 1.7 times as compared with our previous reported limits.Comment: This paper has been accepted by hepn

    Neuroimaging Studies Reveal the Subtle Difference Among Social Network Size Measurements and Shed Light on New Directions

    Get PDF
    Social network size is a key feature when we explore the constructions of human social networks. Despite the disparate understanding of individuals’ social networks, researchers have reached a consensus that human’s social networks are hierarchically organized with different layers, which represent emotional bonds and interaction frequency. Social brain hypothesis emphasizes the significance of complex and demanding social interaction environments and assumes that the cognitive constraints may have an impact on the social network size. This paper reviews neuroimaging studies on social networks that explored the connection between individuals’ social network size and neural mechanisms and finds that Social Network Index (SNI) and Social Network Questionnaires (SNQs) are the mostly-adopted measurements of one’s social network size. The two assessments have subtle difference in essence as they measure the different sublayers of one’s social network. The former measures the relatively outer sub-layer of one’s stable social relationship, similar to the sympathy group, while the latter assesses the innermost layer—the core of one’s social network, often referred to as support clique. This subtle difference is also corroborated by neuroimaging studies, as SNI-measured social network size is largely correlated with the amygdala, while SNQ-assessed social network size is closely related to both the amygdala and the orbitofrontal cortex. The two brain regions respond to disparate degrees of social closeness, respectively. Finally, it proposes a careful choice among the measurements for specific purposes and some new approaches to assess individuals’ social network size

    Proton-Boron Fusion Yield Increased by Orders of Magnitude with Foam Targets

    Full text link
    A novel intense beam-driven scheme for high yield of the tri-alpha reaction 11B(p,{\alpha})2{\alpha} was investigated. We used a foam target made of cellulose triacetate (TAC, C_9H_{16}O_8) doped with boron. It was then heated volumetrically by soft X-ray radiation from a laser heated hohlraum and turned into a homogenous, and long living plasma. We employed a picosecond laser pulse to generate a high-intensity energetic proton beam via the well-known Target Normal Sheath Acceleration (TNSA) mechanism. We observed up to 10^{10}/sr {\alpha} particles per laser shot. This constitutes presently the highest yield value normalized to the laser energy on target. The measured fusion yield per proton exceeds the classical expectation of beam-target reactions by up to four orders of magnitude under high proton intensities. This enhancement is attributed to the strong electric fields and nonequilibrium thermonuclear fusion reactions as a result of the new method. Our approach shows opportunities to pursue ignition of aneutronic fusion

    Pan-cancer analysis of whole genomes

    Get PDF
    Cancer is driven by genetic change, and the advent of massively parallel sequencing has enabled systematic documentation of this variation at the whole-genome scale(1-3). Here we report the integrative analysis of 2,658 whole-cancer genomes and their matching normal tissues across 38 tumour types from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). We describe the generation of the PCAWG resource, facilitated by international data sharing using compute clouds. On average, cancer genomes contained 4-5 driver mutations when combining coding and non-coding genomic elements; however, in around 5% of cases no drivers were identified, suggesting that cancer driver discovery is not yet complete. Chromothripsis, in which many clustered structural variants arise in a single catastrophic event, is frequently an early event in tumour evolution; in acral melanoma, for example, these events precede most somatic point mutations and affect several cancer-associated genes simultaneously. Cancers with abnormal telomere maintenance often originate from tissues with low replicative activity and show several mechanisms of preventing telomere attrition to critical levels. Common and rare germline variants affect patterns of somatic mutation, including point mutations, structural variants and somatic retrotransposition. A collection of papers from the PCAWG Consortium describes non-coding mutations that drive cancer beyond those in the TERT promoter(4); identifies new signatures of mutational processes that cause base substitutions, small insertions and deletions and structural variation(5,6); analyses timings and patterns of tumour evolution(7); describes the diverse transcriptional consequences of somatic mutation on splicing, expression levels, fusion genes and promoter activity(8,9); and evaluates a range of more-specialized features of cancer genomes(8,10-18).Peer reviewe

    Design and baseline characteristics of the finerenone in reducing cardiovascular mortality and morbidity in diabetic kidney disease trial

    Get PDF
    Background: Among people with diabetes, those with kidney disease have exceptionally high rates of cardiovascular (CV) morbidity and mortality and progression of their underlying kidney disease. Finerenone is a novel, nonsteroidal, selective mineralocorticoid receptor antagonist that has shown to reduce albuminuria in type 2 diabetes (T2D) patients with chronic kidney disease (CKD) while revealing only a low risk of hyperkalemia. However, the effect of finerenone on CV and renal outcomes has not yet been investigated in long-term trials. Patients and Methods: The Finerenone in Reducing CV Mortality and Morbidity in Diabetic Kidney Disease (FIGARO-DKD) trial aims to assess the efficacy and safety of finerenone compared to placebo at reducing clinically important CV and renal outcomes in T2D patients with CKD. FIGARO-DKD is a randomized, double-blind, placebo-controlled, parallel-group, event-driven trial running in 47 countries with an expected duration of approximately 6 years. FIGARO-DKD randomized 7,437 patients with an estimated glomerular filtration rate >= 25 mL/min/1.73 m(2) and albuminuria (urinary albumin-to-creatinine ratio >= 30 to <= 5,000 mg/g). The study has at least 90% power to detect a 20% reduction in the risk of the primary outcome (overall two-sided significance level alpha = 0.05), the composite of time to first occurrence of CV death, nonfatal myocardial infarction, nonfatal stroke, or hospitalization for heart failure. Conclusions: FIGARO-DKD will determine whether an optimally treated cohort of T2D patients with CKD at high risk of CV and renal events will experience cardiorenal benefits with the addition of finerenone to their treatment regimen. Trial Registration: EudraCT number: 2015-000950-39; ClinicalTrials.gov identifier: NCT02545049

    One-dimensional learning: detrimental to the Situational Judgement Test?

    No full text
    corecore