60 research outputs found

    Is albumin gradient or fluid to serum albumin ratio better than the pleural fluid lactate dehydroginase in the diagnostic of separation of pleural effusion?

    Get PDF
    BACKGROUND: To determine the accuracy of serum-effusion albumin gradient (SEAG) and pleural fluid to serum albumin ratio (ALBR) in the diagnostic separation of pleural effusion into transudate and exudate and to compare SEAG and ALBR with pleural fluid LDH (FLDH) the most widely used test. METHODS: Data collected from 200 consecutive patients with a known cause of pleural effusion in a United Kingdom district general hospital. RESULTS: The median and inter quartile ranges (IQR) for SEAG 93.5 (33.8 to 122.5) g/dl, ALBR 0.49 (0.42 to 0.62) and FLDH 98.5 IU/L(76.8 to 127.5) in transudates were significantly lower than the corresponding values for exudates 308.5 (171 to 692), 0.77 (0.63 to 0.85), 344 (216 to 695) all p < 0.0001. The Area Under the Curve (AUC) with 95% confidence intervals (Cl) for SEAG, ALBR and FLDH were 0.81 (0.75 to 0.87), 0.79 (0.72 to 0.86) and 0.9 (0.87 to 0.96) respectively. The positive likelihood ratios with 95%CI for FLDH, SEAG, and ALBR were: 7.3(3.5–17), 6.3(3–15) 6.2(3–14) respectively. There was a significant negative correlation between SEAG and ALBR (r= -0.89, p < 0.0001). CONCLUSION: The discriminative value for SEAG and ALBR appears to be similar in the diagnostic separation of transudates and exudates. FLDH is a superior test compared to SEAG and ALBR

    Neutrophilic airways inflammation in lung cancer: the role of exhaled LTB-4 and IL-8

    Get PDF
    Background: Recent advances in lung cancer biology presuppose its inflammatory origin. In this regard, LTB-4 and IL-8 are recognized to play a crucial role in neutrophil recruitment into airways during lung cancer.Notwithstanding the intriguing hypothesis, the exact role of neutrophilic inflammation in tumour biology remains complex and not completely known.The aim of this study was to give our contribution in this field by investigating LTB-4 and IL-8 in the breath condensate of NSCLC patients and verifying their role in cancer development and progression.Method: We enrolled 50 NSCLC patients and 35 controls. LTB-4 and IL-8 concentrations were measured in the breath condensate and the blood of all the subjects under study using EIA kits. Thirty NSCLC patients and ten controls underwent induced sputum collection and analysis.Results: LTB-4 and IL-8 resulted higher in breath condensate and the blood of NSCLC patients compared to controls. Significantly higher concentrations were found as the cancer stages progressed. A positive correlation was observed between exhaled IL-8 and LTB-4 and the percentage of neutrophils in the induced sputum.Conclusion: The high concentrations of exhaled LTB-4 and IL-8 showed the presence of a neutrophilic inflammation in the airways of NSCLC patients and gave a further support to the inflammatory signalling in lung cancer. These exhaled proteins could represent a suitable non-invasive marker in the diagnosis and monitoring of lung cancer. © 2011 Carpagnano et al; licensee BioMed Central Ltd

    Pan-cancer analysis of whole genomes

    Get PDF
    Cancer is driven by genetic change, and the advent of massively parallel sequencing has enabled systematic documentation of this variation at the whole-genome scale(1-3). Here we report the integrative analysis of 2,658 whole-cancer genomes and their matching normal tissues across 38 tumour types from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). We describe the generation of the PCAWG resource, facilitated by international data sharing using compute clouds. On average, cancer genomes contained 4-5 driver mutations when combining coding and non-coding genomic elements; however, in around 5% of cases no drivers were identified, suggesting that cancer driver discovery is not yet complete. Chromothripsis, in which many clustered structural variants arise in a single catastrophic event, is frequently an early event in tumour evolution; in acral melanoma, for example, these events precede most somatic point mutations and affect several cancer-associated genes simultaneously. Cancers with abnormal telomere maintenance often originate from tissues with low replicative activity and show several mechanisms of preventing telomere attrition to critical levels. Common and rare germline variants affect patterns of somatic mutation, including point mutations, structural variants and somatic retrotransposition. A collection of papers from the PCAWG Consortium describes non-coding mutations that drive cancer beyond those in the TERT promoter(4); identifies new signatures of mutational processes that cause base substitutions, small insertions and deletions and structural variation(5,6); analyses timings and patterns of tumour evolution(7); describes the diverse transcriptional consequences of somatic mutation on splicing, expression levels, fusion genes and promoter activity(8,9); and evaluates a range of more-specialized features of cancer genomes(8,10-18).Peer reviewe

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)1.

    Get PDF
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field
    • 

    corecore