6 research outputs found

    Predation risk and the evolution of a vertebrate stress response: Parallel evolution of stress reactivity and sexual dimorphism

    Get PDF
    Predation risk is often invoked to explain variation in stress responses. Yet, the answers to several key questions remain elusive, including the following: (1) how predation risk influences the evolution of stress phenotypes, (2) the relative importance of environmental versus genetic factors in stress reactivity and (3) sexual dimorphism in stress physiology. To address these questions, we explored variation in stress reactivity (ventilation frequency) in a post-Pleistocene radiation of live-bearing fish, where Bahamas mosquitofish (Gambusia hubbsi) inhabit isolated blue holes that differ in predation risk. Individuals of populations coexisting with predators exhibited similar, relatively low stress reactivity as compared to low-predation populations. We suggest that this dampened stress reactivity has evolved to reduce energy expenditure in environments with frequent and intense stressors, such as piscivorous fish. Importantly, the magnitude of stress responses exhibited by fish from high-predation sites in the wild changed very little after two generations of laboratory rearing in the absence of predators. By comparison, low-predation populations exhibited greater among-population variation and larger changes subsequent to laboratory rearing. These low-predation populations appear to have evolved more dampened stress responses in blue holes with lower food availability. Moreover, females showed a lower ventilation frequency, and this sexual dimorphism was stronger in high-predation populations. This may reflect a greater premium placed on energy efficiency in live-bearing females, especially under high-predation risk where females show higher fecundities. Altogether, by demonstrating parallel adaptive divergence in stress reactivity, we highlight how energetic trade-offs may mould the evolution of the vertebrate stress response under varying predation risk and resource availability

    Sediment Records Shed Light on Drivers of Decadal Iron Concentration Increase in a Boreal Lake

    No full text
    Increasing iron (Fe) concentrations are found in lakes on a wide geographical scale but exact causes are still debated. The observed trends might result from increased Fe loading from the terrestrial catchment, but also from changes in how Fe distributes between the water column and the sediments. To get a better understanding of the causes we investigated whether there has been any change in the sediment formation of Fe sulfides (FeS) as an Fe sink in response to declining atmospheric sulfur (S) deposition during recent decades. For our study, we chose Lake Bolmen in southern Sweden, a lake for which we confirmed that Fe concentrations in the water column have strongly increased along with water color during 1966-2018. Our investigations showed that Fe accumulation and speciation varied independently of S accumulation patterns in the Lake Bolmen sediment record. Thus, we were not able to relate the positive trend in Fe concentrations to reduced FeS binding in the sediments. Furthermore, we found that Fe accumulation rates increased along with lake water Fe concentrations, indicating that increased catchment loading rather than a change in the distribution between the sediments and the water column has driven the increase in Fe concentrations. The increased loading may be due to land-use change in the form of an extensive expansion of coniferous forest during the past century. Altered forest management practices and increased precipitation may have led to enhanced weathering and erosion of organic soil layers under aging coniferous forest

    Diel vertical migration of copepods and its environmental drivers in subtropical Bahamian blue holes

    No full text
    Diel vertical migration (DVM) is the most common behavioral phenomenon in zooplankton, and numerous studies have evaluated DVM under strong seasonality at higher latitudes. Yet, our understanding of the environmental drivers of DVM at low latitudes, where seasonal variation is less pronounced, remains limited. Therefore, we here examined patterns of vertical distribution in copepods in six subtropical Bahamian blue holes with different food web structure and tested the role of several key environmental variables potentially affecting this behavior. Day and night samplings showed that copepods generally performed DVM, characterized by downward migration to deeper depths during the day and upward migration to surface waters at night. Across all blue holes, the daytime vertical depth distribution of calanoid copepods correlated positively with both predation risk and depth of food resources (Chlorophyll a), but was less affected by ultraviolet radiation (UVR). A potential explanation is that since UVR is a continuous threat across seasons, zooplankton have established photoprotective pigmentation making them less vulnerable to this threat. The copepods also showed a size-structured depth segregation, where larger individuals were found at deeper depths during the day, which further strengthens the suggestion that predation is a major driver of DVM in these systems. Hence, in contrast to studies performed at higher latitudes, we show that despite the constant exposure to UVR, predator avoidance and food availability are the most pronounced drivers of copepod DVM at those low latitudes, suggesting that the main driver of DVM may vary among systems, but also systematically by latitude

    Low-latitude zooplankton pigmentation plasticity in response to multiple threats

    No full text
    Crustacean copepods in high-latitude lakes frequently alter their pigmentation facultatively to defend themselves against prevailing threats, such as solar ultraviolet radiation ( UVR) and visually oriented predators. Strong seasonality in those environments promotes phenotypic plasticity. To date, no one has investigated whether low-latitude copepods, experiencing continuous stress from UVR and predation threats, exhibit similar inducible defences. We here investigated the pigmentation levels of Bahamian 'blue hole' copepods, addressing this deficit. Examining several populations varying in predation risk, we found the lowest levels of pigmentation in the population experiencing the highest predation pressure. In a laboratory experiment, we found that, in contrast with our predictions, copepods from these relatively constant environments did show some changes in pigmentation subsequent to the removal of UVR; however, exposure to water from different predation regimes induced minor and idiosyncratic pigmentation change. Our findings suggest that low-latitude zooplankton in inland environments may exhibit reduced, but non-zero, levels of phenotypic plasticity compared with their high-latitude counterparts
    corecore