3,022 research outputs found

    Clebsch Potentials in the Variational Principle for a Perfect Fluid

    Get PDF
    Equations for a perfect fluid can be obtained by means of the variational principle both in the Lagrangian description and in the Eulerian one. It is known that we need additional fields somehow to describe a rotational isentropic flow in the latter description. We give a simple explanation for these fields; they are introduced to fix both ends of a pathline in the variational calculus. This restriction is imposed in the former description, and should be imposed in the latter description. It is also shown that we can derive a canonical Hamiltonian formulation for a perfect fluid by regarding the velocity field as the input in the framework of control theory.Comment: 15 page

    A Variational Principle for Dissipative Fluid Dynamics

    Full text link
    In the variational principle leading to the Euler equation for a perfect fluid, we can use the method of undetermined multiplier for holonomic constraints representing mass conservation and adiabatic condition. For a dissipative fluid, the latter condition is replaced by the constraint specifying how to dissipate. Noting that this constraint is nonholonomic, we can derive the balance equation of momentum for viscous and viscoelastic fluids by using a single variational principle. We can also derive the associated Hamiltonian formulation by regarding the velocity field as the input in the framework of control theory.Comment: 15 page

    Clebsch Potentials in the Variational Principle for a Perfect Fluid

    Full text link
    Equations for a perfect fluid can be obtained by means of the variational principle both in the Lagrangian description and in the Eulerian one. It is known that we need additional fields somehow to describe a rotational isentropic flow in the latter description. We give a simple explanation for these fields; they are introduced to fix both ends of a pathline in the variational calculus. This restriction is imposed in the former description, and should be imposed in the latter description. It is also shown that we can derive a canonical Hamiltonian formulation for a perfect fluid by regarding the velocity field as the input in the framework of control theory.Comment: 15 page

    Failure Mechanism of True 2D Granular Flows

    Full text link
    Most previous experimental investigations of two-dimensional (2D) granular column collapses have been conducted using three-dimensional (3D) granular materials in narrow horizontal channels (i.e., quasi-2D condition). Our recent research on 2D granular column collapses by using 2D granular materials (i.e., aluminum rods) has revealed results that differ markedly from those reported in the literature. We assume a 2D column with an initial height of h0 and initial width of d0, a defined as their ratio (a =h0/d0), a final height of h , and maximum run-out distance of d . The experimental data suggest that for the low a regime (a <0.65) the ratio of the final height to initial height is 1. However, for the high a regime (a >0.65), the ratio of a to (d-d0)/d0, h0/h , or d/d0 is expressed by power-law relations. In particular, the following power-function ratios (h0/h=1.42a^2/3 and d/d0=4.30a^0.72) are proposed for every a >0.65. In contrast, the ratio (d-d0)/d0=3.25a^0.96 only holds for 0.65< a1.5. In addition, the influence of ground contact surfaces (hard or soft beds) on the final run-out distance and destruction zone of the granular column under true 2D conditions is investigated.Comment: 8 page

    Les <<jeux>> dans L'Automne à Pékin

    Full text link

    On the Activation of Thoria Emitter by Zirconium

    Get PDF
    corecore