5,780 research outputs found

    Quantum Conformal Algebras and Closed Conformal Field Theory

    Get PDF
    We investigate the quantum conformal algebras of N=2 and N=1 supersymmetric gauge theories. Phenomena occurring at strong coupling are analysed using the Nachtmann theorem and very general, model-independent, arguments. The results lead us to introduce a novel class of conformal field theories, identified by a closed quantum conformal algebra. We conjecture that they are the exact solution to the strongly coupled large-N_c limit of the open conformal field theories. We study the basic properties of closed conformal field theory and work out the operator product expansion of the conserved current multiplet T. The OPE structure is uniquely determined by two central charges, c and a. The multiplet T does not contain just the stress-tensor, but also R-currents and finite mass operators. For this reason, the ratio c/a is different from 1. On the other hand, an open algebra contains an infinite tower of non-conserved currents, organized in pairs and singlets with respect to renormalization mixing. T mixes with a second multiplet T* and the main consequence is that c and a have different subleading corrections. The closed algebra simplifies considerably at c=a, where it coincides with the N=4 one.Comment: 19 page

    Towards the classification of conformal field theories in arbitrary even dimension

    Get PDF
    I identify the class of even-dimensional conformal field theories that is most similar to two-dimensional conformal field theory. In this class the formula, elaborated recently, for the irreversibility of the renormalization-group flow applies also to massive flows. This implies a prediction for the ratio between the coefficient of the Euler density in the trace anomaly (charge a) and the stress-tensor two-point function (charge c). More precisely, the trace anomaly in external gravity is quadratic in the Ricci tensor and the Ricci scalar and contains a unique central charge. I check the prediction in detail in four, six and eight dimensions, and then in arbitrary even dimension.Comment: 9 page

    A universal flow invariant in quantum field theory

    Get PDF
    A flow invariant is a quantity depending only on the UV and IR conformal fixed points and not on the flow connecting them. Typically, its value is related to the central charges a and c. In classically-conformal field theories, scale invariance is broken by quantum effects and the flow invariant a_{UV}-a_{IR} is measured by the area of the graph of the beta function between the fixed points. There exists a theoretical explanation of this fact. On the other hand, when scale invariance is broken at the classical level, it is empirically known that the flow invariant equals c_{UV}-c_{IR} in massive free-field theories, but a theoretical argument explaining why it is so is still missing. A number of related open questions are answered here. A general formula of the flow invariant is found, which holds also when the stress tensor has improvement terms. The conditions under which the flow invariant equals c_{UV}-c_{IR} are identified. Several non-unitary theories are used as a laboratory, but the conclusions are general and an application to the Standard Model is addressed. The analysis of the results suggests some new minimum principles, which might point towards a better understanding of quantum field theory.Comment: 28 pages, 3 figures; proof-corrected version for CQ

    A note on the dimensional regularization of the Standard Model coupled with Quantum Gravity

    Get PDF
    In flat space, gamma5 and the epsilon tensor break the dimensionally continued Lorentz symmetry, but propagators have fully Lorentz invariant denominators. When the Standard Model is coupled with quantum gravity gamma5 breaks the continued local Lorentz symmetry. I show how to deform the Einstein lagrangian and gauge-fix the residual local Lorentz symmetry so that the propagators of the graviton, the ghosts and the BRST auxiliary fields have fully Lorentz invariant denominators. This makes the calculation of Feynman diagrams more efficient.Comment: 8 pages; v2: comment on first order formalism, PL

    A note on the improvement ambiguity of the stress tensor and the critical limits of correlation functions

    Get PDF
    I study various properties of the critical limits of correlators containing insertions of conserved and anomalous currents. In particular, I show that the improvement term of the stress tensor can be fixed unambiguously, studying the RG interpolation between the UV and IR limits. The removal of the improvement ambiguity is encoded in a variational principle, which makes use of sum rules for the trace anomalies a and a'. Compatible results follow from the analysis of the RG equations. I perform a number of self-consistency checks and discuss the issues in a large set of theories.Comment: 15 page

    The Complete Form of N=2 Supergravity and its Place in the General Framework of D=4 N--Extended Supergravities

    Full text link
    Relying on the geometrical set up of Special K\"ahler Geometry and Quaternionic Geometry, which I discussed at length in my Lectures at the 1995 edition of this Spring School, I present here the recently obtained fully general form of N=2 supergravity with completely arbitrary couplings. This lagrangian has already been used in the literature to obtain various results: notably the partial breaking of supersymmetry and various extremal black--hole solutions. My emphasis, however, is only on providing the reader with a completely explicit and ready to use component expression of the supergravity action. All the details of the derivation are omitted but all the definitions of the items entering the lagrangian and the supersymmetry transformation rules are given.Comment: 11 pages, LaTeX espcrc2, Seminar at Trieste Spring School 199

    A Note on the Holographic Beta and C Functions

    Get PDF
    The holographic RG flow in AdS/CFT correspondence naturally defines a holographic scheme in which the central charge c and the beta function are related by a universal formula. We perform some checks of that formula and we compare it with quantum field theory expectations. We discuss alternative definitions of the c-function. In particular, we compare, for a particular supersymmetric flow, the holographic c-function with the central charge computed directly from the two-point function of the stress-energy tensor.Comment: Version accepted for publication in Phys. Lett. B, expanded introduction. 11 pages, 2 embedded eps figure

    Renormalization of a class of non-renormalizable theories

    Full text link
    Certain power-counting non-renormalizable theories, including the most general self-interacting scalar fields in four and three dimensions and fermions in two dimensions, have a simplified renormalization structure. For example, in four-dimensional scalar theories, 2n derivatives of the fields, n>1, do not appear before the nth loop. A new kind of expansion can be defined to treat functions of the fields (but not of their derivatives) non-perturbatively. I study the conditions under which these theories can be consistently renormalized with a reduced, eventually finite, set of independent couplings. I find that in common models the number of couplings sporadically grows together with the order of the expansion, but the growth is slow and a reasonably small number of couplings is sufficient to make predictions up to very high orders. Various examples are solved explicitly at one and two loops.Comment: 38 pages, 1 figure; v2: more explanatory comments and references; appeared in JHE

    Gauged Hyperinstantons and Monopole Equations

    Get PDF
    The monopole equations in the dual abelian theory of the N=2 gauge-theory, recently proposed by Witten as a new tool to study topological invariants, are shown to be the simplest elements in a class of instanton equations that follow from the improved topological twist mechanism introduced by the authors in previous papers. When applied to the N=2 sigma-model, this twisting procedure suggested the introduction of the so-called hyperinstantons, or triholomorphic maps. When gauging the sigma-model by coupling it to the vector multiplet of a gauge group G, one gets gauged hyperinstantons that reduce to the Seiberg-Witten equations in the flat case and G=U(1). The deformation of the self-duality condition on the gauge-field strength due to the monopole-hyperinstanton is very similar to the deformation of the self-duality condition on the Riemann curvature previously observed by the authors when the hyperinstantons are coupled to topological gravity. In this paper the general form of the hyperinstantonic equations coupled to both gravity and gauge multiplets is presented.Comment: 13 pages, latex, no figures, [revision: a couple of references reordered correctly

    Gravitational Axial Anomaly for Four Dimensional Conformal Field Theories

    Get PDF
    We construct the three point function involving an axial vector current and two energy-momentum tensors for four dimensional conformal field theories. Conformal symmetry determines the form of this three point function uniquely up to a constant factor if the necessary conservation conditions are imposed. The gravitational axial anomaly present on a curved space background leads to a non-zero contribution for the divergence of the axial current in this three point function even on flat space. Using techniques related to differential regularisation which guarantee that the energy-momentum tensor is conserved and traceless, we calculate the anomaly in the three point function directly. In this way we relate the overall coefficient of the three point function to the scale of the gravitational axial anomaly. We check our results by applying them to the examples of the fermion and photon axial currents.Comment: 15 pages, LaTex, no figures. Discussion of photon triangle anomaly extended, references added. To appear in Nuclear Physics
    • …
    corecore