1,330 research outputs found

    An alternative view on the Bateman-Luke variational principle

    Get PDF
    A new derivation of the Bernoulli equation for water waves in three-dimensional rotating and translating coordinate systems is given. An alternative view on the Bateman-Luke variational principle is presented. The variational principle recovers the boundary value problem governing the motion of potential water waves in a container undergoing prescribed rigid-body motion in three dimensions. A mathematical theory is presented for the problem of three-dimensional interactions between potential surface waves and a floating structure with interior potential fluid sloshing. The complete set of equations of motion for the exterior gravity-driven water waves, and the exact nonlinear hydrodynamic equations of motion for the linear momentum and angular momentum of the floating structure containing fluid, are derived from a second variational principle

    Synergistic Interactions of Dynamic Ridesharing and Battery Electric Vehicles Land Use, Transit, and Auto Pricing Policies

    Get PDF
    It is widely recognized that new vehicle and fuel technology is necessary, but not sufficient, to meet deep greenhouse gas (GHG) reductions goals for both the U.S. and the state of California. Demand management strategies (such as land use, transit, and auto pricing) are also needed to reduce passenger vehicle miles traveled (VMT) and related GHG emissions. In this study, the authors explore how demand management strategies may be combined with new vehicle technology (battery electric vehicles or BEVs) and services (dynamic ridesharing) to enhance VMT and GHG reductions. Owning a BEV or using a dynamic ridesharing service may be more feasible when distances to destinations are made shorter and alternative modes of travel are provided by demand management strategies. To examine potential markets, we use the San Francisco Bay Area activity based travel demand model to simulate business-as-usual, transit oriented development, and auto pricing policies with and without high, medium, and low dynamic ridesharing participation rates and BEV daily driving distance ranges. The results of this study suggest that dynamic ridesharing has the potential to significantly reduce VMT and related GHG emissions, which may be greater than land use and transit policies typically included in Sustainable Community Strategies (under California Senate Bill 375), if travelers are willing pay with both time and money to use the dynamic ridesharing system. However, in general, large synergistic effects between ridesharing and transit oriented development or auto pricing policies were not found in this study. The results of the BEV simulations suggest that TODs may increase the market for BEVs by less than 1% in the Bay Area and that auto pricing policies may increase the market by as much as 7%. However, it is possible that larger changes are possible over time in faster growing regions where development is currently at low density levels (for example, the Central Valley in California). The VMT Fee scenarios show larger increases in the potential market for BEV (as much as 7%). Future research should explore the factors associated with higher dynamic ridesharing and BEV use including individual attributes, characteristics of tours and trips, and time and cost benefits. In addition, the travel effects of dynamic ridesharing systems should be simulated explicitly, including auto ownership, mode choice, destination, and extra VMT to pick up a passenger

    Development of a Hybrid Photo-Diode and its Front-End Electronics for the BTEV Experiment

    Get PDF
    This paper describes the development of a 163-channel Hybrid Photo-Diode (HPD) to be used in the RICH Detector for the BTEV Experiment. This is a joint development project with DEP, Netherlands. It also reports on the development of associated front-end readout electronics based on the va_btev ASIC, undertaken with IDEAS, Norway. Results from bench tests of the first prototypes are presented.Comment: Presented at Fourth International Workshop on RICH Detectors, Pylos Greece, June, 2002; to appear in the proceedings. (5 pages, 4 figures

    A three-threshold learning rule approaches the maximal capacity of recurrent neural networks

    Get PDF
    Understanding the theoretical foundations of how memories are encoded and retrieved in neural populations is a central challenge in neuroscience. A popular theoretical scenario for modeling memory function is the attractor neural network scenario, whose prototype is the Hopfield model. The model has a poor storage capacity, compared with the capacity achieved with perceptron learning algorithms. Here, by transforming the perceptron learning rule, we present an online learning rule for a recurrent neural network that achieves near-maximal storage capacity without an explicit supervisory error signal, relying only upon locally accessible information. The fully-connected network consists of excitatory binary neurons with plastic recurrent connections and non-plastic inhibitory feedback stabilizing the network dynamics; the memory patterns are presented online as strong afferent currents, producing a bimodal distribution for the neuron synaptic inputs. Synapses corresponding to active inputs are modified as a function of the value of the local fields with respect to three thresholds. Above the highest threshold, and below the lowest threshold, no plasticity occurs. In between these two thresholds, potentiation/depression occurs when the local field is above/below an intermediate threshold. We simulated and analyzed a network of binary neurons implementing this rule and measured its storage capacity for different sizes of the basins of attraction. The storage capacity obtained through numerical simulations is shown to be close to the value predicted by analytical calculations. We also measured the dependence of capacity on the strength of external inputs. Finally, we quantified the statistics of the resulting synaptic connectivity matrix, and found that both the fraction of zero weight synapses and the degree of symmetry of the weight matrix increase with the number of stored patterns.Comment: 24 pages, 10 figures, to be published in PLOS Computational Biolog
    • …
    corecore