57 research outputs found

    Rye kernel breakfast increases satiety in the afternoon - an effect of food structure

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The structure of whole grain cereals is maintained to varying degrees during processing and preparation of foods. Food structure can influence metabolism, including perceived hunger and satiety. A diet that enhances satiety per calorie may help to prevent excessive calorie intake. The objective of this work was to compare subjective appetite ratings after consumption of intact and milled rye kernels.</p> <p>Methods</p> <p>Two studies were performed using a randomized, cross-over design. Ratings for appetite (hunger, satiety and desire to eat) were registered during an 8-h period after consumption of whole and milled rye kernels prepared as breads (study 1, n = 24) and porridges (study 2, n = 20). Sifted wheat bread was used as reference in both study parts and the products were eaten in iso-caloric portions with standardized additional breakfast foods. Breads and porridges were analyzed to determine whether structure (whole vs. milled kernels) effected dietary fibre content and composition after preparation of the products. Statistical evaluation of the appetite ratings after intake of the different breakfasts was done by paired t-tests for morning and afternoon ratings separately, with subjects as random effect and type of breakfast and time points as fixed effects.</p> <p>Results</p> <p>All rye breakfasts resulted in higher satiety ratings in the morning and afternoon compared with the iso-caloric reference breakfast with sifted wheat bread. Rye bread with milled or whole kernels affected appetite equally, so no effect of structure was observed. In contrast, after consumption of the rye kernel breakfast, satiety was increased and hunger suppressed in the afternoon compared with the milled rye kernel porridge breakfast. This effect could be related to structural differences alone, because the products were equal in nutritional content including dietary fibre content and composition.</p> <p>Conclusions</p> <p>The study demonstrates that small changes in diet composition such as cereal grain structure have the potential to effect feelings of hunger and satiety.</p> <p>Trial registration</p> <p>This trial was registered at clinicaltrials.gov as <a href="http://www.clinicaltrials.gov/ct2/show/NCT01042418">NCT01042418</a>.</p

    Optical Control of Metabotropic Glutamate Receptors

    Get PDF
    G-protein coupled receptors (GPCRs), the largest family of membrane signaling proteins, respond to neurotransmitters, hormones and small environmental molecules. The neuronal function of many GPCRs has been difficult to resolve because of an inability to gate them with subtype-specificity, spatial precision, speed and reversibility. To address this, we developed an approach for opto-chemical engineering native GPCRs. We applied this to the metabotropic glutamate receptors (mGluRs) to generate light-agonized and light-antagonized “LimGluRs”. The light-agonized “LimGluR2”, on which we focused, is fast, bistable, and supports multiple rounds of on/off switching. Light gates two of the primary neuronal functions of mGluR2: suppression of excitability and inhibition of neurotransmitter release. The light-antagonized “LimGluR2block” can be used to manipulate negative feedback of synaptically released glutamate on transmitter release. We generalize the optical control to two additional family members: mGluR3 and 6. The system works in rodent brain slice and in zebrafish in vivo, where we find that mGluR2 modulates the threshold for escape behavior. These light-gated mGluRs pave the way for determining the roles of mGluRs in synaptic plasticity, memory and disease

    Orally Active Multi-Functional Antioxidants Delay Cataract Formation in Streptozotocin (Type 1) Diabetic and Gamma-Irradiated Rats

    Get PDF
    Age-related cataract is a worldwide health care problem whose progression has been linked to oxidative stress and the accumulation of redox-active metals. Since there is no specific animal model for human age-related cataract, multiple animal models must be used to evaluate potential therapies that may delay and/or prevent cataract formation.Proof of concept studies were conducted to evaluate 4-(5-hydroxypyrimidin-2-yl)-N,N-dimethyl-3,5-dioxopiperazine-1-sulfonamide (compound 4) and 4-(5-hydroxy-4,6-dimethoxypyrimidin-2-yl)-N,N-dimethyl-3,5-dioxopiperazine-1-sulfonamide (compound 8), multi-functional antioxidants that can independently chelate redox metals and quench free radicals, on their ability to delay the progression of diabetic "sugar" cataracts and gamma radiation-induced cataracts. Prior to 15 Gy of whole head irradiation, select groups of Long Evans rats received either diet containing compound 4 or 8, or a single i.p. injection of panthethine, a radioprotective agent. Compared to untreated, irradiated rats, treatment with pantethine, 4 and 8 delayed initial lens changes by 4, 47, and 38 days, respectively, and the average formation of posterior subcapsular opacities by 23, 53 and 58 days, respectively. In the second study, select groups of diabetic Sprague Dawley rats were administered chow containing compounds 4, 8 or the aldose reductase inhibitor AL1576. As anticipated, treatment with AL1576 prevented cataract by inhibiting sorbitol formation in the lens. However, compared to untreated rats, compounds 4 and 8 delayed vacuole formation by 20 days and 12 days, respectively, and cortical cataract formation by 8 and 3 days, respectively, without reducing lenticular sorbitol. Using in vitro lens culture in 30 mM xylose to model diabetic "sugar" cataract formation, western blots confirmed that multi-functional antioxidants reduced endoplasmic reticulum stress.Multi-functional antioxidants delayed cataract formation in two diverse rat models. These studies provide a proof of concept that a general cataract treatment focused on reducing oxidative stress instead of a specific mechanism of cataractogenesis can be developed

    Pan-cancer analysis of whole genomes

    Get PDF
    Cancer is driven by genetic change, and the advent of massively parallel sequencing has enabled systematic documentation of this variation at the whole-genome scale(1-3). Here we report the integrative analysis of 2,658 whole-cancer genomes and their matching normal tissues across 38 tumour types from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). We describe the generation of the PCAWG resource, facilitated by international data sharing using compute clouds. On average, cancer genomes contained 4-5 driver mutations when combining coding and non-coding genomic elements; however, in around 5% of cases no drivers were identified, suggesting that cancer driver discovery is not yet complete. Chromothripsis, in which many clustered structural variants arise in a single catastrophic event, is frequently an early event in tumour evolution; in acral melanoma, for example, these events precede most somatic point mutations and affect several cancer-associated genes simultaneously. Cancers with abnormal telomere maintenance often originate from tissues with low replicative activity and show several mechanisms of preventing telomere attrition to critical levels. Common and rare germline variants affect patterns of somatic mutation, including point mutations, structural variants and somatic retrotransposition. A collection of papers from the PCAWG Consortium describes non-coding mutations that drive cancer beyond those in the TERT promoter(4); identifies new signatures of mutational processes that cause base substitutions, small insertions and deletions and structural variation(5,6); analyses timings and patterns of tumour evolution(7); describes the diverse transcriptional consequences of somatic mutation on splicing, expression levels, fusion genes and promoter activity(8,9); and evaluates a range of more-specialized features of cancer genomes(8,10-18).Peer reviewe
    corecore