29 research outputs found
Evolutionary Dynamics of Co-Segregating Gene Clusters Associated with Complex Diseases
BACKGROUND: The distribution of human disease-associated mutations is not random across the human genome. Despite the fact that natural selection continually removes disease-associated mutations, an enrichment of these variants can be observed in regions of low recombination. There are a number of mechanisms by which such a clustering could occur, including genetic perturbations or demographic effects within different populations. Recent genome-wide association studies (GWAS) suggest that single nucleotide polymorphisms (SNPs) associated with complex disease traits are not randomly distributed throughout the genome, but tend to cluster in regions of low recombination. PRINCIPAL FINDINGS: Here we investigated whether deleterious mutations have accumulated in regions of low recombination due to the impact of recent positive selection and genetic hitchhiking. Using publicly available data on common complex diseases and population demography, we observed an enrichment of hitchhiked disease associations in conserved gene clusters subject to selection pressure. Evolutionary analysis revealed that these conserved gene clusters arose by multiple concerted rearrangements events across the vertebrate lineage. We observed distinct clustering of disease-associated SNPs in evolutionary rearranged regions of low recombination and high gene density, which harbor genes involved in immunity, that is, the interleukin cluster on 5q31 or RhoA on 3p21. CONCLUSIONS: Our results suggest that multiple lineage specific rearrangements led to a physical clustering of functionally related and linked genes exhibiting an enrichment of susceptibility loci for complex traits. This implies that besides recent evolutionary adaptations other evolutionary dynamics have played a role in the formation of linked gene clusters associated with complex disease traits
Human and Non-Human Primate Genomes Share Hotspots of Positive Selection
Among primates, genome-wide analysis of recent positive selection is currently
limited to the human species because it requires extensive sampling of genotypic
data from many individuals. The extent to which genes positively selected in
human also present adaptive changes in other primates therefore remains unknown.
This question is important because a gene that has been positively selected
independently in the human and in other primate lineages may be less likely to
be involved in human specific phenotypic changes such as dietary habits or
cognitive abilities. To answer this question, we analysed heterozygous Single
Nucleotide Polymorphisms (SNPs) in the genomes of single human, chimpanzee,
orangutan, and macaque individuals using a new method aiming to identify
selective sweeps genome-wide. We found an unexpectedly high number of
orthologous genes exhibiting signatures of a selective sweep simultaneously in
several primate species, suggesting the presence of hotspots of positive
selection. A similar significant excess is evident when comparing genes
positively selected during recent human evolution with genes subjected to
positive selection in their coding sequence in other primate lineages and
identified using a different test. These findings are further supported by
comparing several published human genome scans for positive selection with our
findings in non-human primate genomes. We thus provide extensive evidence that
the co-occurrence of positive selection in humans and in other primates at the
same genetic loci can be measured with only four species, an indication that it
may be a widespread phenomenon. The identification of positive selection in
humans alongside other primates is a powerful tool to outline those genes that
were selected uniquely during recent human evolution
Signatures of positive selection in East African Shorthorn Zebu:A genome-wide single nucleotide polymorphism analysis
The small East African Shorthorn Zebu (EASZ) is the main indigenous cattle across East Africa. A recent genome wide SNP analysis revealed an ancient stable African taurine x Asian zebu admixture. Here, we assess the presence of candidate signatures of positive selection in their genome, with the aim to provide qualitative insights about the corresponding selective pressures. Four hundred and twenty-five EASZ and four reference populations (Holstein-Friesian, Jersey, N'Dama and Nellore) were analysed using 46,171 SNPs covering all autosomes and the X chromosome. Following FST and two extended haplotype homozygosity-based (iHS and Rsb) analyses 24 candidate genome regions within 14 autosomes and the X chromosome were revealed, in which 18 and 4 were previously identified in tropical-adapted and commercial breeds, respectively. These regions overlap with 340 bovine QTL. They include 409 annotated genes, in which 37 were considered as candidates. These genes are involved in various biological pathways (e.g. immunity, reproduction, development and heat tolerance). Our results support that different selection pressures (e.g. environmental constraints, human selection, genome admixture constrains) have shaped the genome of EASZ. We argue that these candidate regions represent genome landmarks to be maintained in breeding programs aiming to improve sustainable livestock productivity in the tropics
Pan-cancer analysis of whole genomes
Cancer is driven by genetic change, and the advent of massively parallel sequencing has enabled systematic documentation of this variation at the whole-genome scale(1-3). Here we report the integrative analysis of 2,658 whole-cancer genomes and their matching normal tissues across 38 tumour types from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). We describe the generation of the PCAWG resource, facilitated by international data sharing using compute clouds. On average, cancer genomes contained 4-5 driver mutations when combining coding and non-coding genomic elements; however, in around 5% of cases no drivers were identified, suggesting that cancer driver discovery is not yet complete. Chromothripsis, in which many clustered structural variants arise in a single catastrophic event, is frequently an early event in tumour evolution; in acral melanoma, for example, these events precede most somatic point mutations and affect several cancer-associated genes simultaneously. Cancers with abnormal telomere maintenance often originate from tissues with low replicative activity and show several mechanisms of preventing telomere attrition to critical levels. Common and rare germline variants affect patterns of somatic mutation, including point mutations, structural variants and somatic retrotransposition. A collection of papers from the PCAWG Consortium describes non-coding mutations that drive cancer beyond those in the TERT promoter(4); identifies new signatures of mutational processes that cause base substitutions, small insertions and deletions and structural variation(5,6); analyses timings and patterns of tumour evolution(7); describes the diverse transcriptional consequences of somatic mutation on splicing, expression levels, fusion genes and promoter activity(8,9); and evaluates a range of more-specialized features of cancer genomes(8,10-18).Peer reviewe