61 research outputs found
DNA Dynamics Is Likely to Be a Factor in the Genomic Nucleotide Repeats Expansions Related to Diseases
Trinucleotide repeats sequences (TRS) represent a common type of genomic DNA
motif whose expansion is associated with a large number of human diseases. The
driving molecular mechanisms of the TRS ongoing dynamic expansion across
generations and within tissues and its influence on genomic DNA functions are
not well understood. Here we report results for a novel and notable collective
breathing behavior of genomic DNA of tandem TRS, leading to propensity for large
local DNA transient openings at physiological temperature. Our Langevin
molecular dynamics (LMD) and Markov Chain Monte Carlo (MCMC) simulations
demonstrate that the patterns of openings of various TRSs depend specifically on
their length. The collective propensity for DNA strand separation of repeated
sequences serves as a precursor for outsized intermediate bubble states
independently of the G/C-content. We report that repeats have the potential to
interfere with the binding of transcription factors to their consensus sequence
by altered DNA breathing dynamics in proximity of the binding sites. These
observations might influence ongoing attempts to use LMD and MCMC simulations
for TRS–related modeling of genomic DNA functionality in elucidating the
common denominators of the dynamic TRS expansion mutation with potential
therapeutic applications
Parent formulation at the Lagrangian level
The recently proposed first-order parent formalism at the level of equations
of motion is specialized to the case of Lagrangian systems. It is shown that
for diffeomorphism-invariant theories the parent formulation takes the form of
an AKSZ-type sigma model. The proposed formulation can be also seen as a
Lagrangian version of the BV-BRST extension of the Vasiliev unfolded approach.
We also discuss its possible interpretation as a multidimensional
generalization of the Hamiltonian BFV--BRST formalism. The general construction
is illustrated by examples of (parametrized) mechanics, relativistic particle,
Yang--Mills theory, and gravity.Comment: 26 pages, discussion of the truncation extended, typos corrected,
references adde
Distinct Type of Transmission Barrier Revealed by Study of Multiple Prion Determinants of Rnq1
Prions are self-propagating protein conformations. Transmission of the prion state between non-identical proteins, e.g. between homologous proteins from different species, is frequently inefficient. Transmission barriers are attributed to sequence differences in prion proteins, but their underlying mechanisms are not clear. Here we use a yeast Rnq1/[PIN+]-based experimental system to explore the nature of transmission barriers. [PIN+], the prion form of Rnq1, is common in wild and laboratory yeast strains, where it facilitates the appearance of other prions. Rnq1's prion domain carries four discrete QN-rich regions. We start by showing that Rnq1 encompasses multiple prion determinants that can independently drive amyloid formation in vitro and transmit the [PIN+] prion state in vivo. Subsequent analysis of [PIN+] transmission between Rnq1 fragments with different sets of prion determinants established that (i) one common QN-rich region is required and usually sufficient for the transmission; (ii) despite identical sequences of the common QNs, such transmissions are impeded by barriers of different strength. Existence of transmission barriers in the absence of amino acid mismatches in transmitting regions indicates that in complex prion domains multiple prion determinants act cooperatively to attain the final prion conformation, and reveals transmission barriers determined by this cooperative fold
APOBEC signature mutation generates an oncogenic enhancer that drives LMO1 expression in T-ALL
Oncogenic driver mutations are those that provide a proliferative or survival advantage to neoplastic cells, resulting in clonal selection. Although most cancer-causing mutations have been detected in the protein-coding regions of the cancer genome; driver mutations have recently also been discovered within noncoding genomic sequences. Thus, a current challenge is to gain precise understanding of how these unique genomic elements function in cancer pathogenesis, while clarifying mechanisms of gene regulation and identifying new targets for therapeutic intervention. Here we report a C-to-T single nucleotide transition that occurs as a somatic mutation in noncoding sequences 4 kb upstream of the transcriptional start site of the LMO1 oncogene in primary samples from patients with T-cell acute lymphoblastic leukaemia. This single nucleotide alteration conforms to an APOBEC-like cytidine deaminase mutational signature, and generates a new binding site for the MYB transcription factor, leading to the formation of an aberrant transcriptional enhancer complex that drives high levels of expression of the LMO1 oncogene. Since APOBEC-signature mutations are common in a broad spectrum of human cancers, we suggest that noncoding nucleotide transitions such as the one described here may activate potent oncogenic enhancers not only in T-lymphoid cells but in other cell lineages as well
Pan-cancer analysis of whole genomes
Cancer is driven by genetic change, and the advent of massively parallel sequencing has enabled systematic documentation of this variation at the whole-genome scale(1-3). Here we report the integrative analysis of 2,658 whole-cancer genomes and their matching normal tissues across 38 tumour types from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). We describe the generation of the PCAWG resource, facilitated by international data sharing using compute clouds. On average, cancer genomes contained 4-5 driver mutations when combining coding and non-coding genomic elements; however, in around 5% of cases no drivers were identified, suggesting that cancer driver discovery is not yet complete. Chromothripsis, in which many clustered structural variants arise in a single catastrophic event, is frequently an early event in tumour evolution; in acral melanoma, for example, these events precede most somatic point mutations and affect several cancer-associated genes simultaneously. Cancers with abnormal telomere maintenance often originate from tissues with low replicative activity and show several mechanisms of preventing telomere attrition to critical levels. Common and rare germline variants affect patterns of somatic mutation, including point mutations, structural variants and somatic retrotransposition. A collection of papers from the PCAWG Consortium describes non-coding mutations that drive cancer beyond those in the TERT promoter(4); identifies new signatures of mutational processes that cause base substitutions, small insertions and deletions and structural variation(5,6); analyses timings and patterns of tumour evolution(7); describes the diverse transcriptional consequences of somatic mutation on splicing, expression levels, fusion genes and promoter activity(8,9); and evaluates a range of more-specialized features of cancer genomes(8,10-18).Peer reviewe
Gradient microstructure and strength-ductility synergy improvement of 2319 aluminum alloys by hybrid additive manufacturing
Wire-arc additive manufacturing (WAAM) technology has been considered as a suitable method for manufacturing large components of aluminum alloys due to its high deposition rate and material utilization. However, the coarse grain size, high porosity and poor mechanical properties of as-deposited aluminum alloys have limited their further development. In this study, a novel hybrid additive manufacturing (HAM) technology combining WAAM and friction stir processing (FSP) has been developed, and a gradient microstructure 2319 aluminum alloy with ultrafine grains-equiaxed grains-columnar grains was successfully fabricated. The microstructure evolution and mechanical properties also have been investigated in this study. The grain size distribution, texture analysis, and the percentage of recrystallized grains were characterized by electron backscatter diffraction (EBSD). The experimental results demonstrated that the hybrid additive manufacturing can achieve a substantial grain refinement (87.09%) and increase the dynamic recrystallization content to 62% due to alternating mechanical and thermal effects. Meanwhile, compared with WAAM specimens, the hybrid-manufactured 2319 aluminum alloy has improved yield strength (YS) by 32.22%, ultimate tensile strength (UTS) by 8.75%, and elongation (EL) by 20%. The dominant mechanism of the significant strength-ductility synergy improvement also has been revealed
- …