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ORIGINAL ARTICLE

APOBEC signature mutation generates an oncogenic enhancer
that drives LM OI expression in T-ALL

Z Li', BJ Abraham?, A Berezovskaya', N Farah®, Y Liu*, T Leon®, A Fielding®, SH Tan>®, T Sanda®>%, AS Weintraub?, B Li’®, S Shen”?,

J Zhang*, MR Mansour®, RA Young®® and AT Look''°

Oncogenic driver mutations are those that provide a proliferative or survival advantage to neoplastic cells, resulting in clonal
selection. Although most cancer-causing mutations have been detected in the protein-coding regions of the cancer genome; driver
mutations have recently also been discovered within noncoding genomic sequences. Thus, a current challenge is to gain precise
understanding of how these unique genomic elements function in cancer pathogenesis, while clarifying mechanisms of gene
regulation and identifying new targets for therapeutic intervention. Here we report a C-to-T single nucleotide transition that occurs
as a somatic mutation in noncoding sequences 4 kb upstream of the transcriptional start site of the LMOT oncogene in primary
samples from patients with T-cell acute lymphoblastic leukaemia. This single nucleotide alteration conforms to an APOBEC-like
cytidine deaminase mutational signature, and generates a new binding site for the MYB transcription factor, leading to the
formation of an aberrant transcriptional enhancer complex that drives high levels of expression of the LMOT oncogene. Since
APOBEC-signature mutations are common in a broad spectrum of human cancers, we suggest that noncoding nucleotide
transitions such as the one described here may activate potent oncogenic enhancers not only in T-lymphoid cells but in other cell

lineages as well.

Leukemia (2017) 31, 2057—2064; doi:10.1038/leu.2017.75

INTRODUCTION

Despite enormous efforts expended on the resequencing of
human tumour genomes over the past decade, almost all of such
efforts have focused on the discovery of coding mutations. Many
critical proto-oncogenes become oncogenic due to aberrant
overexpression in human cancer cells through genomic abnorm-
alities such as chromosomal translocations, inversions and
deletions in noncoding genomic sequences.? Recent discoveries
of small scale mutations in noncoding gene regulatory regions
have inspired considerable interest in identifying abnormalities
that create strong transcriptional enhancers or promoters capable
of driving the expression of critical oncogenes in human cancer.>™
Although such efforts to identify 'driver mutations' in the
noncoding genome and distinguish them from 'passengers' has
been difficult, it could be important as a way to implicate
targetable oncogenes for 'precision medicine', whose overexpres-
sion is based on clonal selection for aberrant transcriptional
enhancers.

The LIM-domain-only (LMO) proteins (LMO1-4) are transcrip-
tional regulatory proteins that are not able to directly bind to
DNA but rather contain two LIM domains that mediate protein-
protein interactions.””'® In T-cell acute lymphoblastic leukaemia
(T-ALL) cells, either LMO1 or LMO2 is a critical component of a
transcriptional complex comprised of TAL1, TCF12/HEB, TCF3/E2A,

MYB, RUNX1, GATA3 and LDB1, which forms a positive inter-
connected auto-regulatory circuit that is a major driver of
malignant transformation in ~60% of cases of T-ALL in children
and adults.>'%"2

Both LMO1 and LMO2 are downregulated as thymocytes
progress in differentiation to the double-positive stage,'®'*'*
and a critical event in transformation in this genetic subtype of
T-ALL is the aberrant upregulation of one of these two genes. One
cause of aberrant expression of LMO1 is the t(11;14)(p15;911)
LMO1-TCRD rearrangement.g'w"17 However, < 1% of T-ALL
patients harbour activating translocations involving LMO1, which
cannot explain its overexpression in each T-ALL case that
aberrantly overexpresses the LMOT mRNA,'®2° suggesting that
other types of genetic abnormalities can cause aberrant expres-
sion of the LMO1 gene.

MATERIALS AND METHODS

Human T-ALL cell lines

The identities of T-ALL cell lines were confirmed by analysis of short
tandem repeats using the PowerPlex 1.2 system (Promega, Fitchburg, WI,
USA) in January 2013, and the T-ALL cell lines used for ChIP-seq in this
study were reconfirmed in February 2016. All T-ALL cell lines were cultured
in RPMI-1640 medium supplemented with 10% FBS, L-glutamine and
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penicillin/streptomycin (Invitrogen, Waltham, MA, USA). HEK-293 T cells
were maintained in Dulbecco’s modified Eagle’s medium supplemented
with 10% FBS, L-glutamine and penicillin/streptomycin. Cell lines were
tested for mycoplasma contamination and found negative before used for
experiments.

Sequencing of the LMO1 enhancer region in T-ALL cell lines

The 739-bp genomic region of the LMOT enhancer was amplified by PCR
using Phusion High-Fidelity DNA polymerase (New England Biolabs, Inc.,
Ipswich, MA, USA). The primers used are 5-CACTTCGTCCTTCAGGCACT-3’
and 5'-CGGCGGGATTAGGAAGTCTC-3". PCR products were purified using
QIAquick PCR purification kit (Qiagen, Venlo, The Netherlands) and sent for
Sanger sequencing in both forward and reverse orientation (Genewiz, Inc.,
Cambridge, MA, USA).

Quantitative reverse transcriptase PCR (QRT-PCR)

RNeasy kit (Qiagen) was used to harvest total RNA from T-ALL cells, which
was then reverse transcribed with Superscript Il (Invitrogen). Quantitative
PCR analysis was conducted with the ViiATM 7 system (Life Technologies,
Waltham, MA, USA) using SYBR Green PCR Master Mix (Roche, Basel,
Switzerland) and the following specific primers sets for each gene:
LMO1-F: 5'-CGCAAGATCAAGGACCGCTA-3’; LMO1-R: 5'-GCATCACCATCTC
GAAGGCT-3"; LMO2-F: 5'-TCGGCCATCGAAAGGAAGAG-3'; LMO2-R: 5'-ATG
GCCTTCAGGAAGTAGCG-3"; 18S-F: 5'-AACCCGTTGAACCCCATT-3'; 18S-R:
5'-CCATCCAATCGGTAGTAGCG-3"; MYB-F: 5'-TGTTGCATGGATCCTGTGTT-3;
MYB-R: 5'-AGTTCAGTGCTGGCCATCTT-3'.

Analysis of SNPs in 5-UTR of LMO1

All RNA samples were DNase-treated (Qiagen) prior to Superscript Ill RT-
PCR (Invitrogen). The SNP named rs2071485 C/T in the LMO1 5’-UTR region
was analysed by PCR of Jurkat genomic DNA and paired Jurkat cDNA
samples, and sequencing with the following primer pairs: (1) for Jurkat
genomic DNA: 5-TAGCGGGCTCTAATTACCCG-3' and 5'-CGTCTCCACTCC
CCATTAACC-3'; (2) for Jurkat cDNA: 5-GCCACGAGATTCCCCCATCT-3' and
5'-CGGTCCTTGATCTTGCGGTT-3". PCR products were purified using QIA-
quick PCR purification kit (Qiagen) and sent for Sanger sequencing in both
forward and reverse orientation (Genewiz, Inc.).

Luciferase reporter assay

A 585-bp genomic region of the LMO1 enhancer mutation site was cloned
into pGL3-promoter vector (E176A, Promega), encoding a minimal SV40
promoter upstream of Firefly luciferase (pGL3-Luc). For reporter assays,
additional information can be found in Supplementary Materials and
Methods.

Lentiviral shRNA induced MYB knockdown experiments

shRNA sequences were cloned into the lentiviral vector pLKO.1-puro. The
target sequences are 5-ACAACAGCCACAACGTCTATA-3' (GFP shRNA) and
5'-CCAGATTGTAAATGCTCATTT-3' (MYB shRNA).'*> Additional information
for lentiviral particles preparation and infection of T-ALL cells can be found
in Supplementary Materials and Methods.

Processing and analysis of chromatin immunoprecipitation
coupled with massively parallel DNA sequencing (ChIP-seq)

ChIP coupled with massively parallel DNA sequencing (ChIP-seq) was
performed and analysed as previously described.>'? For additional
information, see Supplementary Materials and Methods.

Analysis of transcription factor binding motifs

Wild type and mutant LMOT enhancer sequences were analysed with
UniPROBE as previously published.>*'*? Locations of DNA sequence motifs
preferred by important T-ALL regulators were identified in the LMO17
enhancer by using FIMO with motif libraries from Transfac and
Hocomoco.”

ChIA-PET experiments and the data analysis in Jurkat cells

The ChIA-PET data were obtained from a previous study (PMID:26940867,
GEO ID: GSE68977).%* The data were processed using the Dowen pipeline
as described in PMID: 26940867 with minor modifications.**
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Statistical analysis
Statistical significance was assessed with Student’s t-test (two-tailed).

RESULTS

Aberrant enhancer activity associated with high-level expression
of LMO1 in human T-ALL cells

To identify mutations in the T-ALL genome that might significantly
alter oncogene expression, we focused our search on aberrant,
sample-specific enhancers in 10 different human T-ALL cell lines as
identified by H3K27ac ChIP-seq. By focusing on the small fraction
of the genome enriched in H3K27ac, we eliminated much of the
vast human noncoding sequence from consideration. We also
focused on enhancers that were active in human T-ALL cell lines,
but not evident in normal thymocytes or CD34" hematopoietic
stem and progenitor cells (HSPCs).

Human T-ALL cell lines generally express high levels of either
LMOT or its close relative LMO2, consistent with the functional
redundancy of these two critical oncogenes in T-ALL transforma-
tion (Figure 1a). The three T-ALL cell lines that overexpress LMOT
(RPMI-8402, Jurkat and Loucy) also contain active enhancer
regions adjacent to the gene based on the H3K27ac ChIP-seq
results shown in Figure 1b. The previously identified normal
hematopoietic cell enhancer downstream of the LMOT gene is
evident in normal CD34" HSPCs*® and in the Loucy cell line
(Figure 1b), which has an early T-cell precursor (ETP ALL)
phenotype.?®> The aberrant active enhancer we identified was
present upstream of the LMOT gene in RPMI-8402 and Jurkat
T-ALL cell lines, but not in normal CD34* HSPCs or normal thymus
(Figure 1b). RPMI-8402 cells contain the t(11;14)(p15;q11) LMOT-
TCRD chromosomal translocation, which juxtaposes LMOT to gene
regulatory elements within the T-cell receptor a/8 locus, leading to
ectopic overexpression of LMO1.” Jurkat cells, by contrast, lack a
chromosomal translocation to account for aberrant LMOT
enhancer activity and high levels of expression of the oncogene,
suggesting unknown cis-acting genomic lesions affecting LMO1
regulatory sequences that create the aberrant transcriptional
enhancer in Jurkat cells.

Identification of a recurrent, somatic, heterozygous C-to-T single
nucleotide mutation in T-ALL
The aberrant enhancer in Jurkat cells is located ~ 4 kb upstream of
the proximal transcription start site of LMOT7, which is used
exclusively by these cells based on polyA RNA-seq analysis
(Figure 1b and Supplementary Figure S1). ChiIP-seq results showed
precise alignment of MYB binding and H3K27ac accumulation at
the site of the aberrant LMO1 enhancer in Jurkat cells (Figure 2a),
which prompted us to perform Sanger sequence analysis of the
genomic DNA region encompassing the MYB binding peak by
ChIP-seq. We identified a heterozygous C-to-T single nucleotide
mutation that aligned precisely with the MYB ChIP-seq peak in
Jurkat cells (Figure 2a and Supplementary Figure S2). None of the
remaining 19 human T-ALL cell lines had any detectable genomic
sequence abnormalities in this region (Supplementary Table S1).
Interestingly, we found that the mutation we identified, TCA to
TTA, conforms to an APOBEC mutational signature, TCN to TTN,
which has been widely identified across the genome in a variety of
human cancer types as 'signature 2'.2®%” APOBEC3 was highly
expressed during thymocyte development in the mouse
(Supplementary Figure S3A).?® There are 11 distinct human
APOBEC family members.?® Human T-ALL cell lines expressed
varying levels of APOBEC3B, 3C and 3G (Supplementary
Figure S3B). Consistently, RNA-seq data of 265 primary T-ALLs
(Figure 2c) revealed high levels of expression of APOBEC3C, 3D,
3 F and 3G in all cases and expression of APOBEC3A, 3B and 3H in
a subset of cases (Supplementary Figure S3C). These results



indicate ample opportunity for APOBEC mutations to occur during
aberrant thymocyte development leading to T-ALL.

Sequencing of 187 paediatric primary T-ALL samples collected
at diagnosis identified 4 patients (2.14%) who harbour the same
heterozygous mutation. In three of these patients who had
matched diagnosis and remission samples, the mutations were
somatically acquired in the malignant T-ALL clone (Figure 2b and
Supplementary Figure S4). The somatic mutation was also
identified in the relapse sample available for one of these patients
(Figure 2b). The somatic origin of the mutant allele was further
confirmed by its absence in the germline WGS data generated
from 2925 paediatric cancer patients. Two of the four primary
T-ALLs with LMOT enhancer mutation harboured SIL-TAL1
deletion and one carried TCR-TAL2 translocation (Supplementary
Table S2), indicating that they belong to the TAL1/TAL2*
molecular subtype of T-ALL, consistent with the notion that TAL
and LMO proteins act as a complex and function cooperatively in
T-ALL transformation.>®3! None of these four cases had character-
istics of early T-cell precursor (ETP) ALL, in that the TCRy chain was
rearranged in the three cases that were tested and the
immunophenoytpe of each case did not meet the criteria for
ETP ALL>>*

Analysis of the available RNA-seq data showed that the T-ALL
tumour with the LMOT enhancer mutation had the sixth highest
expression level of LMOT relative to the 264 T-ALLs analysed in the
NCI TARGET (Figure 2c), consistent with the cancer cell line data
(Figure 1a). This finding emphasizes the importance of the
matched gene expression data in interpreting the consequences
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of noncoding mutations and shows that the C-to-T mutation leads
to high expression levels of LMOT in patient samples as well as in
Jurkat cells. We have previously shown that a common single
nucleotide polymorphism in the first intron of the LMO1 gene is
highly associated with LMO1 expression in neuroblastoma cells.>*
RNA-seq analysis showed that ~ 4% of T-ALL tumours express high
levels of LMO1, whereas 79% of neuroblastoma tumours express
high levels of this gene (Figure 2c). Analysis of the sequence of
this region in 214 diagnostic samples and 21 relapse samples from
neuroblastoma patients identified only the reference C allele at
this position, with no evidence for the C-to-T mutation.

The C-to-T mutation introduces a MYB binding motif and drives

LMO1 overexpression

Analysis of the genomic sequences of both C and T alleles, using
UniPROBE and HOCOMOCO databases,?** identified a de novo-
binding motif for the MYB transcription factor (Figure 3a and
Supplementary Table S3), while analysis of the MYB and H3K27ac
ChiIP-seq DNA sequence reads aligned with this site demon-
strated that MYB and H3K27ac were bound almost exclusively by
the T allele (Figure 3b). Genomic and cDNA sequencing of the
5’UTR of the LMOT1 gene demonstrated monoallelic expression of
LMOT1 in Jurkat cells (Figure 3c). Importantly, analysis of the
whole-genome sequencing and RNA-seq data of the primary
T-ALL sample with C-to-T mutation also showed monoallelic
expression of LMOT (Supplementary Figure S5). Knockdown of
MYB expression using lentivirus-transduced shRNA decreased
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Figure 1. Aberrant enhancer upstream of the LMOT gene in RPMI-8402 and Jurkat cells. (a) mRNA expression of LMOT (upper panel) and LMO2
(lower panel) determined by quantitative polymerase chain reaction (PCR) and normalized to human 18S ribosomal RNA in 12 human T-ALL
cell lines. (b) Normalized ChiIP-seq tracks of H3K27ac at the LMOT locus in human fetal thymic tissue, human purified normal hematopoietic
stem cell sample (CD34") that expresses LMOT mRNA, and 10 human T-ALL cell lines. The black arrow beneath the chart indicates the direction
of LMOT transcription. ChIP-seq read densities (y axis) are normalized to reads per million reads sequenced in each sample.
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nucleotide substitution that aligns precisely with the MYB ChIP-seq peak in Jurkat cells, designated C allele and T allele, respectively. (b) Whole
genome sequencing (WGS) reads from diagnosis (top), relapse (middle) and remission (bottom) DNA of a T-ALL patient with the C-to-T
mutation (shown as G-to-A and pointed by the arrow). Mismatch to the reference genome, which represents the mutant allele, is labelled in
red. Lower-case letters are used to present residues with low sequence quality (quality score < 20). (c) Scatterplot of LMO1 expression in
pediatric T-ALL (left panel) and neuroblastoma (right panel) by RNA-seq data generated by the TARGET project. The T-ALL sample with the
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the expression of LMOT1 significantly in Jurkat cells (Figure 3d),
indicating that MYB binding to the somatically acquired
heterozygous MYB binding motif leads to enhanced expression
of LMOT in T-ALL from the same allele.
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Whole Genome Sequencing

To ascertain whether this single base-pair substitution can
activate LMO1 gene expression, we cloned a 585-bp genomic DNA
fragment from either the C allele or T allele upstream of luciferase
and tested the enhancer activity of this fragment in a reporter
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real-time PCR in Jurkat cells with or without lentiviral shRNA-induced MYB knockdown. *P < 0.05; ***P < 0.001 by two-sample, two-tailed
t test. (e) A 585-bp genomic DNA fragment from either the C allele or T allele was cloned upstream of luciferase. (f) The luciferase constructs
from (e) were delivered into Jurkat and HEK293T cells. In 36 h, the firefly luciferase activity was measured, normalized to renilla luciferase and

expressed as a ratio relative to activity of the reference C allele enhancer construct. **P < 0.01 by two-sample, two-tailed t-test.

assay (Figure 3e). When introduced into Jurkat cells, the construct
containing the T allele exhibited robust reporter activity, which
was four-fold greater than that of the fragment containing the
C allele (Figure 3f). However, the T allele reporter showed no
increased activity over that of the C allele in human HEK-293 T cells
(Figure 3f), suggesting that MYB and other members of the TAL1
complex expressed by Jurkat cells are required for the activation
of gene expression from this site.>'? Taken together, we have
shown that the somatically acquired C-to-T mutation that creates
a MYB binding motif ~ 4 kb upstream of the proximal transcription
start site of LMOT in T-ALL can generate an active transcriptional
enhancer that drives monoallelic overexpression of the LMOT
oncogene.

MYB binding leads to a large aberrant enhancer upstream of the
LMO1 start site

Our discovery of an aberrant oncogenic enhancer upstream of the
LMOT1 gene differs in important ways from the super-enhancer
we identified upstream of the TALT gene.’ Although enhancer
mutations in both cases create a de novo MYB binding site, which
in turn initiates a large aberrant enhancer that drives expression of
a T-ALL oncogene, the mutations upstream of TALT consist of 2- to
18-bp insertions, while in the case of LMOT, the causal mutation is

a C-to-T single nucleotide transition. Another difference is that,
although the LMOT enhancer is quite large, it does not meet the
strict definition of a 'super-enhancer’, as shown in Jurkat cells by
both an enhancer rank chart (Figure 4a) and a frequency
distribution of the enhancer signal (log;o; Figure 4b). As we and
others have shown for TAL1,'** knockdown of LMOT transcripts
by lentivirus-transduced shRNA in Jurkat cells demonstrates that
high levels of LMO1 expression are required for cell survival
(Figures 4c and d), emphasizing that aberrant enhancer elements
can alter gene expression sufficiently to qualify as oncogenic
drivers in T-ALL, despite their lack of full super-enhancer status.

Binding of other members of TAL1 complex to the LMO1 enhancer
in Jurkat cells

By ChIP-seq analysis in Jurkat cells, we found that MYB binding to
the C-to-T mutation site in Jurkat cells is precisely aligned with the
binding of other core components of the TAL1 complex, including
GATA3, RUNX1 and TAL1, as well as LMO1 itself (Figure 5a).>'?
These transcription factors do not bind near this site in the CCRF-
CEM cell line, which lacks the C-to-T substitution, underscoring the
biological importance of the C-to-T mutation that mediates MYB
binding, and is required to initiate an active enhancer in this
region (Figure 5a). Careful analysis of the sequence of the
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(a) Distribution of H3K27ac ChIP-seq signal at enhancers in Jurkat cells. Enhancer regions are plotted in increasing order based on their input-
normalized H3K27ac ChlIP-seq signal. (b) Frequency distribution of H3K27ac ChIP-seq enhancer signal (logyo) in Jurkat cells. Enhancers
qualifying as 'super-enhancers' are shown as red bars. (c) Knockdown of LMO1 by lentivirus-transduced shRNA decreased cell viability in Jurkat
cells. (d) Western blot results show the protein levels of LMO1 and PARP cleavage in control and LMO1 overexpressing Jurkat cells after LMO1

knockdown.

reference genome near the mutation site identified the preferred
binding motifs for RUNX1, GATA3 and ETS1, as well as E-box
motifs characteristic of binding by TAL1-E2A heterodimers
(Figure 5b). Analysis of the DNA sequences immunoprecipitated
in the ChIP-seq experiments showed that RUNX1, GATA3, TALIT,
CBP and Pol Il each binds preferentially to the allele with the
T base-pair mutation in Jurkat cells, indicating that the enhancer
activity occurs only after MYB binding, subsequent to the
acquisition of this single base-pair substitution (Figure 5c). We
also used chromatin interaction analysis with paired-end tag
sequencing (ChIA-PET)** in Jurkat cells to demonstrate that the
aberrant LMOT enhancer interacts with a region 1.7 kb down-
stream of the proximal LMOT transcription start site used by Jurkat
cells (Figure 5d and Supplementary Figure S1), indicating that the
active enhancer mediated by the acquired MYB binding motif
loops to the LMOT gene promoter region to regulate the
transcription of LMOT (Figure 5e).

DISCUSSION

A major question related to noncoding mutations that give rise to
oncogenic enhancer elements is whether these enhancers are
tissue-type specific or whether the same elements can function in
different types of tumours. We recently reported that genetic
predisposition to neuroblastoma is mediated by an inherited G-T
polymorphism that controls a super-enhancer within the first
intron of LMO7 in these cells3* promoting us to compare
regulation of the LMOT oncogene in neuroblastoma with that in
T-ALL. We did not find the C-to-T mutation in 214 diagnostic
samples and 21 relapse samples from neuroblastoma patients,
indicating the mutation-induced enhancer that activates LMO1
expression in T-ALL does not arise during clonal evolution in
neuroblastoma, emphasizing the context-dependence of this
mode of transcriptional regulation. Similarly, even though GATA3
is highly expressed in T-ALL cells,'? the GATA3 binding site in the
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first intron of LMOT, which mediates super-enhancer formation in
neuroblastoma,®® is not bound by GATA3 in T-ALL cells (compare
Figure 5a with 3a in Oldridge et al.>¥). These findings illustrate the
complex nature of lineage-specific enhancer formation in
tumorigenesis as well as development, and underscore the need
for further research into the lineage-restricted factors required for
enhancer formation.

Different mutational processes leave characteristic signatures in
cancer genomes, which implicate the mechanisms underlying the
somatic mutations that arise during the evolution of human
tumours.23¢ The somatic insertions upstream of TALT oncogene
that we recently identified in T-ALL are likely acquired due to the
expression of RAG1 and RAG2 in early lymphoid cells.>® The C-to-T
mutation described here occurs in the context of a TCA motif,
corresponding to one of the APOBEC-induced mutational
signatures.?®??3® We recognize that C-to-T transitions can be
caused by mechanisms other than the APOBEC deaminases;®
however, somatic mutations with the distinctive APOBEC signa-
ture mutations have been widely identified across the genome in
a variety of human cancer types, including breast cancer, lung
cancer and acute myeloid leukaemia, as well as acute lympho-
blastic leukaemia.?®?"?°3538 |n 3 recent study®® of 560 breast
cancers and matched non-neoplastic tissue, >70% of the tumours
harboured from 10 to 90000 mutations whose signatures
reflected aberrant APOBEC DNA-editing activity, and most of
these were located within the noncoding regions of the genome.
Cancer risk variants that affect the noncoding genome pose
difficult challenges such as discriminating between 'driver' and
'passenger' mutations. Our studies provide a clear example of how
noncoding single base pair substitutions can function as
oncogenic drivers by introducing a single transcription factor-
binding site at a strategic location in the patient’s genome.
Aberrant binding of the specific transcription factor, in this case
MYB, can then initiate the formation of an oncogene-specific
enhancer complex that drives high levels of oncogene expression.
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——>» LMOT1

MYB binding initiates binding of other members of TAL1 complex to the aberrant LMO1 enhancer. (a) ChlIP-seq tracks at the

LMOT locus for GATA3, LMO2, LMO1, RUNX1, TAL1, MYB, CBP, H3K4me3, H3K27ac, and RNA polymerase Il (Pol Il) in CCRF-CEM and Jurkat cells.
(b) (upper) Schematic depiction of the region flanking the C-to-T mutation site (Chr 11: 8,289,481 (hg19)), showing binding sites for members of
the TAL1 complex. (lower). Sense and antisense strands of DNA of the enhancer regions in the wild-type reference genome highlighting
sequence motifs for TAL1 complex members. (c) ChIP-seq read counts for sequences immunoprecipitated by antibodies to RUNX1, GATA3,
TAL1, CBP and Pol Il, aligned with either the reference C allele (blue) or the mutant T allele (red). (d) ChlA-PET result showing that the C-to-T
mutation site interacts with DNA 1.7 kb downstream of the proximal transcription start site of LMOT. (e) Model of transcription factor binding
in the aberrant MYB-initiated enhancer complex that interacts with the promoter region of LMO1 in Jurkat cells.

Despite the rapid and revolutionary advancement of genomic
sequencing technologies over the past decade, efforts to identify
'driver mutations' in the noncoding genome of cancer cells have
been challenging because the noncoding genome, exclusive of
transposons, repeated sequence elements and heterochromatin,
is at least 30 times larger and more complex than the coding
genome.”® To identify and distinguish 'driver mutations' from
'passenger mutations' in noncoding genome of cancer, it will be
important to perform both H3K27ac ChIP-seq and RNA-seq, in
addition to whole-genome sequencing, for each tumour sample.
The H3K27ac ChIP-seq results allow one to focus on mutations
that occur within active enhancers, which greatly reduce the
number of mutations that could act in this manner. Since
mutations that upregulate oncogene expression are often
heterozygous, the sequence of the DNA fragments precipitated
in the ChIP-seq procedure should preferentially include the
mutated compared with the reference sequence. RNA-seq should
then indicate high levels of expression of the target gene, and the

presence of SNPs within the expressed sequences should reveal
preferential expression of one of the two alleles. As illustrated in
our study, this experimental approach should readily identify bona
fide driver mutations that act by initiating aberrant enhancers
within the noncoding genome of human cancers. Regulatory
mutations of this type provide clear evidence for selection during
clonal evolution, and thus both the oncoprotein that is
upregulated and the aberrantly activated transcriptional machin-
ery provide attractive targets for therapeutic inhibition.*'*?
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