5 research outputs found

    Pan-cancer analysis of whole genomes

    Get PDF
    Cancer is driven by genetic change, and the advent of massively parallel sequencing has enabled systematic documentation of this variation at the whole-genome scale(1-3). Here we report the integrative analysis of 2,658 whole-cancer genomes and their matching normal tissues across 38 tumour types from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). We describe the generation of the PCAWG resource, facilitated by international data sharing using compute clouds. On average, cancer genomes contained 4-5 driver mutations when combining coding and non-coding genomic elements; however, in around 5% of cases no drivers were identified, suggesting that cancer driver discovery is not yet complete. Chromothripsis, in which many clustered structural variants arise in a single catastrophic event, is frequently an early event in tumour evolution; in acral melanoma, for example, these events precede most somatic point mutations and affect several cancer-associated genes simultaneously. Cancers with abnormal telomere maintenance often originate from tissues with low replicative activity and show several mechanisms of preventing telomere attrition to critical levels. Common and rare germline variants affect patterns of somatic mutation, including point mutations, structural variants and somatic retrotransposition. A collection of papers from the PCAWG Consortium describes non-coding mutations that drive cancer beyond those in the TERT promoter(4); identifies new signatures of mutational processes that cause base substitutions, small insertions and deletions and structural variation(5,6); analyses timings and patterns of tumour evolution(7); describes the diverse transcriptional consequences of somatic mutation on splicing, expression levels, fusion genes and promoter activity(8,9); and evaluates a range of more-specialized features of cancer genomes(8,10-18).Peer reviewe

    Study of the h(c)(1(1)P(1)) meson via psi(2S) -> pi(0)h(c) decays at BESIII

    No full text
    Using 448 million psi(2S) events, the spin-singlet P-wave charmonium state h(c)(1(1)P(1)) is studied via the psi(2S) -> pi(0)h(c) decay followed by the h(c) -> gamma eta(c) transition. The branching fractions are measured to be B-Inc(psi(2S) -> pi(0)h(c)) x B-Tag (h(c) -> gamma eta(c)) = (4.22(-0.26)(+0.27) +/- 0.19) x 10(-4), B-Inc (psi(2S) -> pi(0)h(c)) = (7.32 +/- 0.34 +/- 0.41) x 10(-4) , and B-Tag (h(c) -> gamma eta(c)) = (57.66(-3.50)(+3.62) +/- 0.58)%, where the uncertainties are statistical and systematic, respectively. The h(c)(1(1)P(1)) mass and width are determined to be M = (3525.32 +/- 0.06 +/- 0.15) MeV/c(2) and Gamma = (0.78(-0.24)(+0.27)+/- 0.12) MeV. Using the center of gravity mass of the three chi(cJ) (1(3)P(J)) mesons [M(c.o.g.)], the 1P hyperfine mass splitting is estimated to be Delta(hyp) = M(h(c)) - M(c.o.g.) = (0.03 +/- 0.06 +/- 0.15) MeV/c(2), which is consistent with the expectation that the 1P hyperfine splitting is zero at the lowest order

    Observation of the double Dalitz decay eta' -> e(+)e(-)e(+)e(-)

    No full text
    corecore