99 research outputs found

    Distinct Bacterial Communities in Wet and Dry Seasons During a Seasonal Water Level Fluctuation in the Largest Freshwater Lake (Poyang Lake) in China

    Get PDF
    Water level fluctuations (WLFs) are an inherent feature of lake ecosystems and have been regarded as a pervasive pressure on lacustrine ecosystems globally due to anthropogenic activities and climate change. However, the impacts of WLFs on lake microbial communities is one of our knowledge gaps. Here, we used the high-throughput 16S rRNA gene sequencing approach to investigate the taxonomic and functional dynamics of bacterial communities in wet-season and dry-season of Poyang Lake (PYL) in China. The results showed that dry-season was enriched in total nitrogen (TN), nitrate (NO3-), ammonia (NH4+), and soluble reactive phosphorus (SRP), while wet-season was enriched in dissolved organic carbon (DOC) and total phosphorus (TP). Bacterial communities were distinct taxonomically and functionally in dry-season and wet-season and the nutrients especially P variation had a significant contribution to the seasonal variation of bacterial communities. Moreover, bacterial communities responded differently to nutrient dynamics in different seasons. DOC, NO3-, and SRP had strong influences on bacterial communities in dry-season while only TP in wet-season. Alpha-diversity, functional redundancy, taxonomic dissimilarities, and taxa niche width were higher in dry-season, while functional dissimilarities were higher in wet-season, suggesting that the bacterial communities were more taxonomically sensitive in dry-season while more functionally sensitive in wet-season. Bacterial communities were more efficient in nutrients utilization in wet-season and might have different nitrogen removal mechanisms in different seasons. Bacterial communities in wet-season had significantly higher relative abundance of denitrification genes but lower anammox genes than in dry-season. This study enriched our knowledge of the impacts of WLFs and seasonal dynamics of lake ecosystems. Given the increasingly pervasive pressure of WLFs on lake ecosystems worldwide, our findings have important implications for conservation and management of lake ecosystems

    Corrigendum to: The TianQin project: current progress on science and technology

    Get PDF
    In the originally published version, this manuscript included an error related to indicating the corresponding author within the author list. This has now been corrected online to reflect the fact that author Jun Luo is the corresponding author of the article

    Protective Effects of a Rhodiola Crenulata Extract and Salidroside on Hippocampal Neurogenesis against Streptozotocin-Induced Neural Injury in the Rat

    Get PDF
    Previously we have demonstrated that a Rhodiola crenulata extract (RCE), containing a potent antioxidant salidroside, promotes neurogenesis in the hippocampus of depressive rats. The current study was designed to further investigate the protective effect of the RCE on neurogenesis in a rat model of Alzheimer's disease (AD) induced by an intracerebroventricular injection of streptozotocin (STZ), and to determine whether this neuroprotective effect is induced by the antioxidative activity of salidroside. Our results showed that pretreatment with the RCE significantly improved the impaired neurogenesis and simultaneously reduced the oxidative stress in the hippocampus of AD rats. In vitro studies revealed that (1) exposure of neural stem cells (NSCs) from the hippocampus to STZ strikingly increased intracellular reactive oxygen species (ROS) levels, induced cell death and perturbed cell proliferation and differentiation, (2) hydrogen peroxide induced similar cellular activities as STZ, (3) pre-incubation of STZ-treated NSCs with catalase, an antioxidant, suppressed all these cellular activities induced by STZ, and (4) likewise, pre-incubation of STZ-treated NSCs with salidroside, also an antioxidant, suppressed all these activities as catalase: reduction of ROS levels and NSC death with simultaneous increases in proliferation and differentiation. Our findings indicated that the RCE improved the impaired hippocampal neurogenesis in the rat model of AD through protecting NSCs by its main ingredient salidroside which scavenged intracellular ROS

    Molecular subtypes predict the preferential site of distant metastasis in advanced breast cancer: a nationwide retrospective study

    Get PDF
    ObjectiveThis study aimed to explore possible associations between molecular subtypes and site of distant metastasis in advanced breast cancer (ABC).Methods3577 ABC patients were selected from 21 hospitals of seven geographic regions in China from 2012-2014. A questionnaire was designed to collect medical information regarding demographic characteristics, risk factors, molecular subtype, recurrence/metastasis information, and disease-free survival (DFS). The cancers were classified into Luminal A, Luminal B, HER2-enriched and Triple Negative subtypes. Chi-square test and multivariate Cox proportional hazard models were performed to explore the associations between molecular subtypes and distant metastasis sites.ResultsA total of 2393 cases with molecular subtypes information were finally examined. Patients with Luminal A (51.1%) and Luminal B (44.7%) were most prone to bone metastasis, whereas liver metastasis was more frequently observed in HER2-enriched ABC patients (29.1%).The cumulative recurrence and metastasis rates of ABC patients at 36 months of DFS were the most significant within molecular types, of which Triple Negative was the highest (82.7%), while that of Luminal A was the lowest (58.4%). In the adjusted Cox regression analysis, Luminal B, HER2-enriched and Triple Negative subtypes increased the risk of visceral metastasis by 23%, 46% and 87% respectively. In addition, Triple Negative patients had a higher probability of brain metastasis (HR 3.07, 95% CI: 1.04-9.07).ConclusionMolecular subtypes can predict the preferential sites of distant metastasis, emphasizing that these associations were of great help in choices for surveillance, developing appropriate screening and cancer management strategies for follow-up and personalized therapy in ABC patients

    Pan-cancer analysis of whole genomes

    Get PDF
    Cancer is driven by genetic change, and the advent of massively parallel sequencing has enabled systematic documentation of this variation at the whole-genome scale(1-3). Here we report the integrative analysis of 2,658 whole-cancer genomes and their matching normal tissues across 38 tumour types from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). We describe the generation of the PCAWG resource, facilitated by international data sharing using compute clouds. On average, cancer genomes contained 4-5 driver mutations when combining coding and non-coding genomic elements; however, in around 5% of cases no drivers were identified, suggesting that cancer driver discovery is not yet complete. Chromothripsis, in which many clustered structural variants arise in a single catastrophic event, is frequently an early event in tumour evolution; in acral melanoma, for example, these events precede most somatic point mutations and affect several cancer-associated genes simultaneously. Cancers with abnormal telomere maintenance often originate from tissues with low replicative activity and show several mechanisms of preventing telomere attrition to critical levels. Common and rare germline variants affect patterns of somatic mutation, including point mutations, structural variants and somatic retrotransposition. A collection of papers from the PCAWG Consortium describes non-coding mutations that drive cancer beyond those in the TERT promoter(4); identifies new signatures of mutational processes that cause base substitutions, small insertions and deletions and structural variation(5,6); analyses timings and patterns of tumour evolution(7); describes the diverse transcriptional consequences of somatic mutation on splicing, expression levels, fusion genes and promoter activity(8,9); and evaluates a range of more-specialized features of cancer genomes(8,10-18).Peer reviewe

    Nutrients Drive the Structures of Bacterial Communities in Sediments and Surface Waters in the River-Lake System of Poyang Lake

    No full text
    Lake and its inflow rivers compose a highly linked river-lake system, within which sediment and water are also closely connected. However, our understanding of this linked and interactive system remains unclear. In this study, we examined bacterial communities in the sediments and surface waters in Poyang Lake and its five tributaries. Bacterial communities were determined while using high-throughput 16S rRNA gene sequencing. The results showed significant differences of bacterial communities between sediments and surface waters, as well as between Poyang lake and its tributaries, suggesting that the river-lake system of Poyang Lake provides diverse and distinct habitats for bacterial communities, including lake water, lake sediment, river water, and river sediment. These biomes harbor distinct bacterial assemblages. Sediments harbor more diverse bacterial taxa than surface waters, but the bacterial communities in surface waters were more different across this river-lake system than those in sediments. In this eutrophic river-lake ecosystem, nitrogen and phosphorus were important drivers in sediment bacterial communities. Nitrogen, phosphorus, and dissolved organic carbon, as well as their stoichiometric ratios affected bacterial communities in surface waters. Moreover, network analysis revealed that the bacterial communities in surface waters were more vulnerable to various disturbances than in sediments, due to lower alpha diversity, high complexity of network, and a small number of key taxa (module hubs and connectors). Nutrient variables had strong influences on individual operational taxonomic units (OTUs) in the network, especially in bacterial network in surface waters. Different groups of taxa responded differently to nutrients, with some modules being more susceptible to nutrient variations. This study increased our current knowledge of linked river-lake ecosystems and provided valuable understanding for effective management and protection of these ecosystems by revealing bacterial communities in sediments and surface waters in Poyang Lake and its tributaries, as well as their responses to nutrients variation
    corecore