126 research outputs found

    Effect of hemicellulose liquid phase on the enzymatic hydrolysis of autohydrolyzed Eucalyptus globulus wood

    Get PDF
    In this work, Eucalyptus globulus wood was pretreated under non-isothermal autohydrolysis process at 210, 220, and 230 °C, obtaining a pretreated solid with high cellulose content and a hemicellulosic liquid phase (HLP) containing mainly xylose, acetic acid, furfural, xylooligosaccharides, and phenolic compounds. The maximum concentration of xylooligosaccharides (8.97 g/L) and phenolic compounds (2.66 g/L) was obtained at 210 and 230 °C, respectively. To evaluate the effect of HLP addition on the enzymatic hydrolysis using unwashed pretreated solid as substrate, different proportions of HLP were studied. Also, in order to use the whole slurry on enzymatic hydrolysis, the supplementation of xylanases was evaluated. Glucose concentration of 107.49 g/L (corresponding to 74.65 % of conversion) was obtained using pretreated solid at 220 °C liquid/solid ratio (LSR) of 4 g/g and enzyme solid ratio (ESR) of 25 FPU/gwithout the addition of HLP. Thus, it was shown that the unwashed pretreated solids are susceptible to enzymatic hydrolysis contributing to reduce operational cost (water consumption). Additionally, the influence of the inhibitory compounds in the HLP was shown to affect the enzymatic hydrolysis. Results indicated that 82.52 g/L of glucose (59.37 % of conversion) was obtained, using 100 % of HLP at LSR of 4 g/g and ESR of 16 FPU/g at 210 °C of pretreated solid. However, a positive effect was shown on the enzymatic hydrolysis when the xylanases were added using 100 % of HLP, increasing to 35 and 27 % in the glucose production with respect to whole slurry without addition of xylanases.The authors A. Romani and F. B. Pereira thank to the Portuguese Foundation for Science and Technology (FCT, Portugal) for their fellowships (grant number, SFRH/BPD/77995/2011 and SFRH/BD/64776/2009, respectively)

    Dynamical Mean-Field Theory

    Full text link
    The dynamical mean-field theory (DMFT) is a widely applicable approximation scheme for the investigation of correlated quantum many-particle systems on a lattice, e.g., electrons in solids and cold atoms in optical lattices. In particular, the combination of the DMFT with conventional methods for the calculation of electronic band structures has led to a powerful numerical approach which allows one to explore the properties of correlated materials. In this introductory article we discuss the foundations of the DMFT, derive the underlying self-consistency equations, and present several applications which have provided important insights into the properties of correlated matter.Comment: Chapter in "Theoretical Methods for Strongly Correlated Systems", edited by A. Avella and F. Mancini, Springer (2011), 31 pages, 5 figure

    Pan-cancer analysis of whole genomes

    Get PDF
    Cancer is driven by genetic change, and the advent of massively parallel sequencing has enabled systematic documentation of this variation at the whole-genome scale(1-3). Here we report the integrative analysis of 2,658 whole-cancer genomes and their matching normal tissues across 38 tumour types from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). We describe the generation of the PCAWG resource, facilitated by international data sharing using compute clouds. On average, cancer genomes contained 4-5 driver mutations when combining coding and non-coding genomic elements; however, in around 5% of cases no drivers were identified, suggesting that cancer driver discovery is not yet complete. Chromothripsis, in which many clustered structural variants arise in a single catastrophic event, is frequently an early event in tumour evolution; in acral melanoma, for example, these events precede most somatic point mutations and affect several cancer-associated genes simultaneously. Cancers with abnormal telomere maintenance often originate from tissues with low replicative activity and show several mechanisms of preventing telomere attrition to critical levels. Common and rare germline variants affect patterns of somatic mutation, including point mutations, structural variants and somatic retrotransposition. A collection of papers from the PCAWG Consortium describes non-coding mutations that drive cancer beyond those in the TERT promoter(4); identifies new signatures of mutational processes that cause base substitutions, small insertions and deletions and structural variation(5,6); analyses timings and patterns of tumour evolution(7); describes the diverse transcriptional consequences of somatic mutation on splicing, expression levels, fusion genes and promoter activity(8,9); and evaluates a range of more-specialized features of cancer genomes(8,10-18).Peer reviewe

    Dynamical density functional theory for orientable colloids including inertia and hydrodynamic interactions

    Get PDF
    Over the last few decades, classical density-functional theory (DFT) and its dynamic extensions (DDFTs) have become powerful tools in the study of colloidal fluids. Recently, previous DDFTs for spherically-symmetric particles have been generalised to take into account both inertia and hydrodynamic interactions, two effects which strongly influence non-equilibrium properties. The present work further generalises this framework to systems of anisotropic particles. Starting from the Liouville equation and utilising Zwanzig's projection-operator techniques, we derive the kinetic equation for the Brownian particle distribution function, and by averaging over all but one particle, a DDFT equation is obtained. Whilst this equation has some similarities with DDFTs for spherically-symmetric colloids, it involves a translational-rotational coupling which affects the diffusivity of the (asymmetric) particles. We further show that, in the overdamped (high friction) limit, the DDFT is considerably simplified and is in agreement with a previous DDFT for colloids with arbitrary shape particles.Comment: dynamical density functional theory ; colloidal fluids ; arbitrary-shape particles ; orientable colloid

    Epidemiologic studies of modifiable factors associated with cognition and dementia: systematic review and meta-analysis

    Full text link

    Epidemiology and etiology of Parkinson’s disease: a review of the evidence

    Full text link
    • 

    corecore