19 research outputs found

    Pan-cancer analysis of whole genomes

    Get PDF
    Cancer is driven by genetic change, and the advent of massively parallel sequencing has enabled systematic documentation of this variation at the whole-genome scale(1-3). Here we report the integrative analysis of 2,658 whole-cancer genomes and their matching normal tissues across 38 tumour types from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). We describe the generation of the PCAWG resource, facilitated by international data sharing using compute clouds. On average, cancer genomes contained 4-5 driver mutations when combining coding and non-coding genomic elements; however, in around 5% of cases no drivers were identified, suggesting that cancer driver discovery is not yet complete. Chromothripsis, in which many clustered structural variants arise in a single catastrophic event, is frequently an early event in tumour evolution; in acral melanoma, for example, these events precede most somatic point mutations and affect several cancer-associated genes simultaneously. Cancers with abnormal telomere maintenance often originate from tissues with low replicative activity and show several mechanisms of preventing telomere attrition to critical levels. Common and rare germline variants affect patterns of somatic mutation, including point mutations, structural variants and somatic retrotransposition. A collection of papers from the PCAWG Consortium describes non-coding mutations that drive cancer beyond those in the TERT promoter(4); identifies new signatures of mutational processes that cause base substitutions, small insertions and deletions and structural variation(5,6); analyses timings and patterns of tumour evolution(7); describes the diverse transcriptional consequences of somatic mutation on splicing, expression levels, fusion genes and promoter activity(8,9); and evaluates a range of more-specialized features of cancer genomes(8,10-18).Peer reviewe

    Performance Optimization of SSHC Rectifiers for Piezoelectric Energy Harvesting

    No full text
    In the past decades, inductor-based synchronized switch harvesting on inductor (SSHI) rectifiers have been widely employed in many active rectification systems for piezoelectric energy harvesting. Although SSHI rectifiers achieve high energy extraction performance compared to passive full-bridge rectifier (FBR), the performance greatly depends on the inductor employed. While a larger inductor can achieve higher performance, the system form factor is also increased, which is counter to system miniaturization in many applications. To solve this issue, an efficient synchronized switch harvesting on capacitors (SSHC) rectifier was proposed recently. Instead of using large inductors, the SSHC rectifier employs on-chip or off-chip flying capacitors to achieve comparable or higher performance. In previous studies, the flying capacitors are chosen equal to the inherent capacitance of the piezoelectric transducer (PT) to achieve 1/3 voltage flipping efficiency (η F) for a 1-stage SSHC rectifier and 4/5 flipping efficiency for a 8-stage SSHC rectifier. This brief presents that the flipping efficiency can be further increased to 1/2 for a 1-stage SSHC rectifier if the flying capacitor is chosen to be much larger than C P and the 4/5 flipping efficiency can be achieved by employing only 4 flying capacitors.Green Open Access added to TU Delft Institutional Repository 'You share, we take care!' - Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.Electronic Instrumentatio

    A 2-Mode Reconfigurable SSHI Rectifier with 3.2X Lower Cold-Start Requirement for Piezoelectric Energy Harvesting*

    No full text
    Synchronized switch harvesting on inductor (SSHI) rectifier has been verified as an efficient active rectifier to harvest kinetic energy in piezoelectric energy harvesting (PEH) system. Compared with passive rectifiers, active rectifiers including SSHI rectifier require a stable power supply to drive switches. However, when the system starts from the cold state, the required power supply is not available at first. For the active rectifiers, the active circuits work as a typical full bridge rectifier (FBR) until the stable power supply is built up. Unfortunately, a FBR cannot build up a stable power supply when the input open circuit voltage VOC is lower than the required power supply, resulting in disabled active rectifiers. This paper proposes a 2-mode reconfigurable SSHI rectifier design for low input VOC. By this method, the requirement for the input VOC is 3.2X lower than a FBR. The proposed system is designed in a 0.18µm process and post-layout simulations verify the cold start-up process under low VOC voltage.Green Open Access added to TU Delft Institutional Repository 'You share, we take care!' - Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.Electronic Instrumentatio

    Deep residual learning for acoustic emission source localization in A steel-concrete composite slab

    No full text
    Large errors can be introduced in traditional acoustic emission (AE) source localization methods using extracted signal features such as arrival time difference. This issue is obvious in the case of irregular structural geometries, complex composite structure types or presence of cracks in wave travel paths. In this study, based on a novel deep learning algorithm called deep residual network (DRN), a structural health monitoring (SHM) strategy is proposed for AE source localization through classifying and recognizing the AE signals generated in different sub-regions of critical areas in structures. Hammer hits and pencil-leak break (PLB) tests were carried out on a steel-concrete composite slab specimen to register time-domain AE signals under multiple structural damage conditions. The obtained time-domain AE signals were then converted into time-frequency images as inputs for the proposed DRN architecture using the continuous wavelet transform (CWT). The DRNs were trained, validated and tested by AE signals generated from different source types at various damage states of the slab specimen. The proposed DRN architecture shows an effective potential for AE source localization. The results show that the DRN models pre-trained by the AE signals obtained in the undamaged specimen are able to accurately classify and identify the locations of different types of AE sources with 3–4.5 cm intervals even when multiple cracks with widths up to 4–6 mm are present in the wave travel paths. Moreover, the influence factors on the model performance are investigated, including structural damage conditions, sensor-to-source distances and AE sensor mounting positions; in accordance with the parametric analyses, recommendations are proposed for the engineering application of the proposed SHM strategy.Concrete StructuresMaterials and EnvironmentElectronic Instrumentatio

    A Nanopower 95.6% Efficiency Voltage Regulator with Adaptive Supply-Switching for Energy Harvesting Applications

    No full text
    A nanopower highly efficient low-dropout (LDO) regulator for energy harvesting (EH) applications is presented in this paper. The LDO is fully autonomous with a bandgap reference (BGR) featuring a novel bandgap supply-switching (SS) topology, an over-voltage protection (OVP), a under-voltage lockout (UVLO) and control block to obtain stable output and robust cold-start. The system provides configurable voltage supply (1.1 \sim2V) for potential loads, while consuming as low as 66 nW power. The entire system achieves a peak power efficiency of 95.6% at Vout=2V and I-{\iota-{oad}}=100\muA.Green Open Access added to TU Delft Institutional Repository 'You share, we take care!' - Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.Electronic Instrumentatio

    A Highly Efficient Fully Integrated Active Rectifier for Ultrasonic Wireless Power Transfer

    No full text
    Ultrasonic wireless power transfer (WPT) has been proved to be a promising approach to power biomedical implants. To extract the energy generated from the transducer, a rectifier is typically required. Previous inductor-based rectifiers (SSHI and SECE) require a large off-chip inductor to achieve good performance, which is not desired for miniaturization and safety reasons. Synchronized switch harvesting on capacitors (SSHC) rectifiers have been proved to achieve high performance without inductors; however, they are mainly designed for low-frequency kinetic energy harvesting. In this paper, an improved SSHC rectifier is designed to achieve a fully integrated design with all flying capacitors implemented on-chip. The proposed SSHC rectifier can properly operate at ultrasonic excitation frequency (100 KHz) with precise switching time control and ultrafast voltage flipping techniques. In addition, an on-chip ultralow-power LDO allows the system to be self-sustained. The system is designed in a TSMC 180nm BCD technology and post-layout simulation results are presented.Green Open Access added to TU Delft Institutional Repository 'You share, we take care!' - Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.Electronic Instrumentatio

    Many-objective optimization with improved shuffled frog leaping algorithm for inter-basin water transfers

    No full text
    Inter-basin water transfers (IBWT) are implemented to re-allocate unevenly distributed water resources. However, many conflicting objectives associated with society, economy, and environment have made the water resources allocation problem in IBWT more complicated than ever before. Thus, there is a continuous need for in-depth research with the latest optimization techniques to secure many-objective allocation of water resources for IBWT. In addition, being troubled of easily falling into local minima and premature convergence in some multi-objective optimization algorithms, it is necessary to explore new alternatives to improve their search quality. Here we propose a many-objective optimization methodology for IBWT, which includes three modules: (1) formulating a many-objective optimization problem based on realistic controls; (2) developing a new multi-objective real-coded quantum inspired shuffled frog leaping algorithm (r-MQSFLA) to solve the optimization problem; (3) utilizing the Analytic Hierarchy Process (AHP)-Entropy method to filter the Pareto solutions. In r-MQSFLA, the real-coded quantum computer and the external archive with dynamic updating mechanism are applied to SFLA. The performance of r-MQSFLA is first compared to that of other multi-objective evolutionary algorithms (MOEAs) in solving mathematical benchmark problems. A case study of the Eastern Route of South-to-North Water Transfer Project in Jiangsu Province, China varying from a normal to an extremely dry year, demonstrates that r-MQSFLA displays approximate performance on some compared algorithms and is improved significantly than MOSFLA in terms of convergence, diversity and reasonable solutions. This study can update the understanding of quantum theory to MOEAs and will provide a reference for better water resources allocation in IBWT under uncertainty.Water Resource

    Sustainable designed pavement materials

    No full text
    This Special Issue "Sustainable Designed Pavement Materials" has been proposed and organized as a means to present recent developments in the field of environmentally-friendly designed pavement materials. For this reason, articles included in this special issue relate to different aspects of pavement materials, from industry solid waste recycling to pavement materials recycling, from pavement materials modification to asphalt performance characterization, from pavement defect detection to pavement maintenance, and from asphalt pavement to cement concrete pavement, as highlighted in this editorial.Pavement Engineerin

    Chemo-physical characterization and molecular dynamics simulation of long-term aging behaviors of bitumen

    No full text
    To further explore the long-term aging behaviors of bitumen from the multiscale perspectives, the experimental characterization and molecular dynamics (MD) simulation methods were performed. Series of chemical properties for the virgin and various aged bitumen were evaluated using the TCL-FID, ATR-FTIR, Elemental analysis and GPC tests. The molecular models of virgin and aged bitumen were established firstly, and the influence of long-term aging on the thermodynamics properties was predicted from the MD simulation results. The experimental results revealed that with the aging degree deepened, the resin and asphaltene fractions both increased dramatically, which resulted in the increment of average molecular weight and the more uneven molecular weight distribution in aged bitumen. Moreover, the aging of bitumen led to the increase of the oxidized functional groups (C=O and S=O) index, oxygen content, aromaticity and polarity, while the carbon, hydrogen element contents and the H/C ratio reduced. The density values from MD simulation agreed well with the experimental results, which significantly validated the reliability of molecular models for the virgin and different aged bitumen binders. The MD simulation results demonstrated that the long-term aging remarkably improved the cohesive energy density, solubility parameter and activation energy, however it deteriorated the surface free energy, work of cohesion and self-diffusion coefficient of the bitumen molecular system. This study develops the molecular models of virgin and aged bitumen with different long-term aging degrees, and provides a fundamental understanding regarding the influence of long-term aging influence on the chemo-physical and thermodynamic properties of bitumen.Pavement Engineerin

    30.3 A Bias-Flip Rectifier with a Duty-Cycle-Based MPPT Algorithm for Piezoelectric Energy Harvesting with 98% Peak MPPT Efficiency and 738% Energy-Extraction Enhancement

    No full text
    Synchronized bias-flip rectifiers, such as synchronized switch harvesting on inductor (SSHI) rectifiers, are widely used for piezoelectric energy harvesting (PEH) [1], which can replace the use of batteries in many loT applications, thus reducing both system volume and maintenance cost. However, the output power extracted by such rectifiers strongly depends on the impedance matching between the piezoelectric transducer (PT) and the circuit. To maximize this, two maximum power point tracking (MPPT) algorithms are often used. As shown in Fig. 30.3.1 (left), the Perturb & Observe (P&O) (a.k.a. hill-climbing) algorithm adjusts the rectified output power in a stepwise manner towards the maximum power point (MPP), thus establishing robust and continuous MPPT. However, accurately sensing the rectified output power often requires complex and power-hungry hardware [1], [2]. Another simpler algorithm is based on the fractional open-circuit voltage (FOCV) and involves periodically measuring the PT's open-circuit voltage amplitude (VOC) and regulating the rectified voltage (VREC) to a level (VMPP), which corresponds to the MPP [3-6]. However, the PT must be periodically disconnected from the rectifier to measure VOC, resulting in wasted energy, while the inherent delay in sensing VOC variations reduces the overall tracking efficiency. Furthermore, a calibration step is usually necessary to determine VMPP, since this depends on the actual PT voltage flip efficiency (etaF) of the bias-flip rectifier.Green Open Access added to TU Delft Institutional Repository ‘You share, we take care!’ – Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.Electronic InstrumentationMicroelectronic
    corecore