70 research outputs found

    Intranasal Delivery of Influenza Subunit Vaccine Formulated with GEM Particles as an Adjuvant

    Get PDF
    Nasal administration of influenza vaccine has the potential to facilitate influenza control and prevention. However, when administered intranasally (i.n.), commercially available inactivated vaccines only generate systemic and mucosal immune responses if strong adjuvants are used, which are often associated with safety problems. We describe the successful use of a safe adjuvant Gram-positive enhancer matrix (GEM) particles derived from the food-grade bacterium Lactococcus lactis for i.n. vaccination with subunit influenza vaccine in mice. It is shown that simple admixing of the vaccine with the GEM particles results in a strongly enhanced immune response. Already after one booster, the i.n. delivered GEM subunit vaccine resulted in hemagglutination inhibition titers in serum at a level equal to the conventional intramuscular (i.m.) route. Moreover, i.n. immunization with GEM subunit vaccine elicited superior mucosal and Th1 skewed immune responses compared to those induced by i.m. and i.n. administered subunit vaccine alone. In conclusion, GEM particles act as a potent adjuvant for i.n. influenza immunization

    Genomic and Proteomic Analysis of the Impact of Mitotic Quiescence on the Engraftment of Human CD34+ Cells

    Get PDF
    It is well established that in adults, long-term repopulating hematopoietic stem cells (HSC) are mitotically quiescent cells that reside in specialized bone marrow (BM) niches that maintain the dormancy of HSC. Our laboratory demonstrated that the engraftment potential of human HSC (CD34+ cells) from BM and mobilized peripheral blood (MPB) is restricted to cells in the G0 phase of cell cycle but that in the case of umbilical cord blood (UCB) -derived CD34+ cells, cell cycle status is not a determining factor in the ability of these cells to engraft and sustain hematopoiesis. We used this distinct in vivo behavior of CD34+ cells from these tissues to identify genes associated with the engraftment potential of human HSC. CD34+ cells from BM, MPB, and UCB were fractionated into G0 and G1 phases of cell cycle and subjected in parallel to microarray and proteomic analyses. A total of 484 target genes were identified to be associated with engraftment potential of HSC. System biology modeling indicated that the top four signaling pathways associated with these genes are Integrin signaling, p53 signaling, cytotoxic T lymphocyte-mediated apoptosis, and Myc mediated apoptosis signaling. Our data suggest that a continuum of functions of hematopoietic cells directly associated with cell cycle progression may play a major role in governing the engraftment potential of stem cells. While proteomic analysis identified a total of 646 proteins in analyzed samples, a very limited overlap between genomic and proteomic data was observed. These data provide a new insight into the genetic control of engraftment of human HSC from distinct tissues and suggest that mitotic quiescence may not be the requisite characteristic of engrafting stem cells, but instead may be the physiologic status conducive to the expression of genetic elements favoring engraftment

    Pan-cancer analysis of whole genomes

    Get PDF
    Cancer is driven by genetic change, and the advent of massively parallel sequencing has enabled systematic documentation of this variation at the whole-genome scale(1-3). Here we report the integrative analysis of 2,658 whole-cancer genomes and their matching normal tissues across 38 tumour types from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). We describe the generation of the PCAWG resource, facilitated by international data sharing using compute clouds. On average, cancer genomes contained 4-5 driver mutations when combining coding and non-coding genomic elements; however, in around 5% of cases no drivers were identified, suggesting that cancer driver discovery is not yet complete. Chromothripsis, in which many clustered structural variants arise in a single catastrophic event, is frequently an early event in tumour evolution; in acral melanoma, for example, these events precede most somatic point mutations and affect several cancer-associated genes simultaneously. Cancers with abnormal telomere maintenance often originate from tissues with low replicative activity and show several mechanisms of preventing telomere attrition to critical levels. Common and rare germline variants affect patterns of somatic mutation, including point mutations, structural variants and somatic retrotransposition. A collection of papers from the PCAWG Consortium describes non-coding mutations that drive cancer beyond those in the TERT promoter(4); identifies new signatures of mutational processes that cause base substitutions, small insertions and deletions and structural variation(5,6); analyses timings and patterns of tumour evolution(7); describes the diverse transcriptional consequences of somatic mutation on splicing, expression levels, fusion genes and promoter activity(8,9); and evaluates a range of more-specialized features of cancer genomes(8,10-18).Peer reviewe

    The trans-ancestral genomic architecture of glycemic traits

    Get PDF
    Glycemic traits are used to diagnose and monitor type 2 diabetes and cardiometabolic health. To date, most genetic studies of glycemic traits have focused on individuals of European ancestry. Here we aggregated genome-wide association studies comprising up to 281,416 individuals without diabetes (30% non-European ancestry) for whom fasting glucose, 2-h glucose after an oral glucose challenge, glycated hemoglobin and fasting insulin data were available. Trans-ancestry and single-ancestry meta-analyses identified 242 loci (99 novel; P < 5 × 10−8), 80% of which had no significant evidence of between-ancestry heterogeneity. Analyses restricted to individuals of European ancestry with equivalent sample size would have led to 24 fewer new loci. Compared with single-ancestry analyses, equivalent-sized trans-ancestry fine-mapping reduced the number of estimated variants in 99% credible sets by a median of 37.5%. Genomic-feature, gene-expression and gene-set analyses revealed distinct biological signatures for each trait, highlighting different underlying biological pathways. Our results increase our understanding of diabetes pathophysiology by using trans-ancestry studies for improved power and resolution

    Exercise-induced stress behavior, gut-microbiota-brain axis and diet: a systematic review for athletes

    Full text link

    The effects of customer equity drivers on loyalty across services industries and firms

    Get PDF
    Customer equity drivers (CEDs)—value equity, brand equity, and relationship equity—positively affect loyalty intentions, but this effect varies across industries and firms. We empirically examine potential industry and firm characteristics that explain why the CEDs–loyalty link varies across services industries and firms in the Netherlands. The results show that (1) some previously assumed industry and firm characteristics have moderating effects while others do not and (2) firm-level advertising expenditures constitute the most crucial moderator because they influence all three loyalty strategies (significant for value equity and brand equity; marginally significant for relationship equity), while three industry contexts (i.e., innovative markets, visibility to others, and complexity of purchase decisions) each influence two of the three loyalty strategies. Our results clearly show that specific industry and firm characteristics affect the effectiveness of specific loyalty strategies

    Systematic review: antihypertensive drug therapy in patients of African and South Asian ethnicity

    Get PDF

    The Modified Selenenyl Amide, M-hydroxy Ebselen, Attenuates Diabetic Nephropathy and Diabetes-Associated Atherosclerosis in ApoE/GPx1 Double Knockout Mice

    Get PDF
    Seleno-organic glutathione peroxidase (GPx) mimetics, including ebselen (Eb), have been tested in in vitro studies for their ability to scavenge reactive oxygen and nitrogen species, including hydrogen peroxide and peroxynitrite. In this study, we investigated the efficacies of two Eb analogues, m-hydroxy ebselen (ME) and ethanol-ebselen (EtE) and compared these with Eb in cell based assays. We found that ME is superior in attenuating the activation of hydrogen peroxide-induced pro-inflammatory mediators, ERK and P38 in human aortic endothelial cells. Consequently, we investigated the effects of ME in an in vivo model of diabetes, the ApoE/GPx1 double knockout (dKO) mouse. We found that ME attenuates plaque formation in the aorta and lesion deposition within the aortic sinus of diabetic dKO mice. Oxidative stress as assessed by 8-OHdG in urine and nitrotyrosine immunostaining in the aortic sinus and kidney tubules, was reduced by ME in diabetic dKO mice. ME also attenuated diabetes-associated renal injury which included tubulointerstitial fibrosis and glomerulosclerosis. Furthermore, the bioactivity of the pro-fibrotic cytokine transforming growth factor-beta (TGF-beta) as assessed by phospho-Smad2/3 immunostaining was attenuated after treatment with ME. TGF-beta-stimulated increases in collagen I and IV gene expression and protein levels were attenuated by ME in rat kidney tubular cells. However, in contrast to the superior activity of ME in in vitro and cell based assays, ME did not further augment the attenuation of diabetes-associated atherosclerosis and renal injury in our in vivo model when compared with Eb. In conclusion, this study strengthens the notion that bolstering GPx-like activity using synthetic mimetics may be a useful therapeutic strategy in lessening the burden of diabetic complications. However, these studies highlight the importance of in vivo analyses to test the efficacies of novel Eb analogues, as in vitro and cell based assays are only partly predictive of the in vivo situation
    corecore