32 research outputs found

    Mucopolysaccharidosis type II (Hunter syndrome): a clinical review and recommendations for treatment in the era of enzyme replacement therapy

    Get PDF
    Mucopolysaccharidosis type II (MPS II; Hunter syndrome) is a rare X-linked recessive disease caused by deficiency of the lysosomal enzyme iduronate-2-sulphatase, leading to progressive accumulation of glycosaminoglycans in nearly all cell types, tissues and organs. Clinical manifestations include severe airway obstruction, skeletal deformities, cardiomyopathy and, in most patients, neurological decline. Death usually occurs in the second decade of life, although some patients with less severe disease have survived into their fifth or sixth decade. Until recently, there has been no effective therapy for MPS II, and care has been palliative. Enzyme replacement therapy (ERT) with recombinant human iduronate-2-sulphatase (idursulfase), however, has now been introduced. Weekly intravenous infusions of idursulfase have been shown to improve many of the signs and symptoms and overall wellbeing in patients with MPS II. This paper provides an overview of the clinical manifestations, diagnosis and symptomatic management of patients with MPS II and provides recommendations for the use of ERT. The issue of treating very young patients and those with CNS involvement is also discussed. ERT with idursulfase has the potential to benefit many patients with MPS II, especially if started early in the course of the disease

    Pan-cancer analysis of whole genomes

    Get PDF
    Cancer is driven by genetic change, and the advent of massively parallel sequencing has enabled systematic documentation of this variation at the whole-genome scale(1-3). Here we report the integrative analysis of 2,658 whole-cancer genomes and their matching normal tissues across 38 tumour types from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). We describe the generation of the PCAWG resource, facilitated by international data sharing using compute clouds. On average, cancer genomes contained 4-5 driver mutations when combining coding and non-coding genomic elements; however, in around 5% of cases no drivers were identified, suggesting that cancer driver discovery is not yet complete. Chromothripsis, in which many clustered structural variants arise in a single catastrophic event, is frequently an early event in tumour evolution; in acral melanoma, for example, these events precede most somatic point mutations and affect several cancer-associated genes simultaneously. Cancers with abnormal telomere maintenance often originate from tissues with low replicative activity and show several mechanisms of preventing telomere attrition to critical levels. Common and rare germline variants affect patterns of somatic mutation, including point mutations, structural variants and somatic retrotransposition. A collection of papers from the PCAWG Consortium describes non-coding mutations that drive cancer beyond those in the TERT promoter(4); identifies new signatures of mutational processes that cause base substitutions, small insertions and deletions and structural variation(5,6); analyses timings and patterns of tumour evolution(7); describes the diverse transcriptional consequences of somatic mutation on splicing, expression levels, fusion genes and promoter activity(8,9); and evaluates a range of more-specialized features of cancer genomes(8,10-18).Peer reviewe

    Embracing Errors for Learning:Intrapersonal and Interpersonal Factors in Feedback Provision and Processing in Dyadic Interactions

    Get PDF
    Previous feedback models in education (1) overlook that intrapersonal factors (i.e. factors describing one’s personality) as well as interpersonal factors (i.e. factors describing the relationship between people) simultaneously affect feedback provision and feedback processing and (2) only implicitly assume that the feedback sender and feedback recipient deal with error identification and error making during feedback processes. This chapter provides a model that conceptualises the concurrent interplay between intrapersonal and interpersonal factors and feedback provision and feedback processing in dyadic interactions, while taking as a starting point the assumption that errors, if identified and acted upon, offer a potential to revise one’s own performance. As such, the model embraces the theoretical complexity of interpersonal communication, as well as the importance of errors for learning
    corecore