59 research outputs found

    Pan-cancer analysis of whole genomes

    Get PDF
    Cancer is driven by genetic change, and the advent of massively parallel sequencing has enabled systematic documentation of this variation at the whole-genome scale(1-3). Here we report the integrative analysis of 2,658 whole-cancer genomes and their matching normal tissues across 38 tumour types from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). We describe the generation of the PCAWG resource, facilitated by international data sharing using compute clouds. On average, cancer genomes contained 4-5 driver mutations when combining coding and non-coding genomic elements; however, in around 5% of cases no drivers were identified, suggesting that cancer driver discovery is not yet complete. Chromothripsis, in which many clustered structural variants arise in a single catastrophic event, is frequently an early event in tumour evolution; in acral melanoma, for example, these events precede most somatic point mutations and affect several cancer-associated genes simultaneously. Cancers with abnormal telomere maintenance often originate from tissues with low replicative activity and show several mechanisms of preventing telomere attrition to critical levels. Common and rare germline variants affect patterns of somatic mutation, including point mutations, structural variants and somatic retrotransposition. A collection of papers from the PCAWG Consortium describes non-coding mutations that drive cancer beyond those in the TERT promoter(4); identifies new signatures of mutational processes that cause base substitutions, small insertions and deletions and structural variation(5,6); analyses timings and patterns of tumour evolution(7); describes the diverse transcriptional consequences of somatic mutation on splicing, expression levels, fusion genes and promoter activity(8,9); and evaluates a range of more-specialized features of cancer genomes(8,10-18).Peer reviewe

    (Bad) feelings about meeting them? Episodic and chronic intergroup emotions associated with positive and negative intergroup contact as predictors of intergroup behavior.

    No full text
    Based on two cross-sectional probability samples (Study 1: N = 1,382, Study 2: N = 1,587), we studied the interplay between positive and negative intergroup contact, different types of intergroup emotions (i.e., episodic intergroup emotions encountered during contact and more general chronic intergroup emotions), and outgroup behavior in the context of intergroup relations between non-immigrant Germans and foreigners living in Germany. In Study 1, we showed that positive and negative contact are related to specific episodic intergroup emotions (i.e., anger, fear and happiness). Results of Study 2 indicate an indirect effect of episodic intergroup emotions encountered during contact experiences on specific behavioral tendencies directed at outgroup members via more chronic situation-independent intergroup emotions. As expected, anger predicted approaching (discriminatory) behavioral tendencies (i.e., aggression) while fear predicted avoidance. The results extend the existing literature on intergroup contact and emotions by addressing positive and negative contact simultaneously and differentiating between situation-specific episodic and chronic intergroup emotions in predicting discriminatory behavioral tendencies

    Molecular mechanisms of detrusor and corporal myocyte contraction: identifying targets for pharmacotherapy of bladder and erectile dysfunction

    No full text
    The Post-Genomic age presents many new challenges and opportunities for the improved understanding, diagnosis and treatment of human disease. The long-term goal is to identify molecular correlates of disease processes, and use this information to develop novel and more effective therapeutics. A major hurdle in this regard is ensuring that the molecular targets of interest are indeed relevant to the physiology and/or pathophysiology of the processes being studied, and, moreover, to determine if they are specific to the tissue/organ being investigated. As a first step in this direction, we have reviewed the literature pertaining to bladder and erectile physiology/pharmacology and dysfunction and attempted to summarize some of the critical molecular mechanisms regulating detrusor and corporal myocyte tone. Because of the vast amount of published data, we have limited the scope of this review to consideration of the calcium-mobilizing and calcium-sensitizing pathways in these cells. Despite obvious differences in phenotypic characteristics of the detrusor and corporal myocyte, there are some common molecular changes that may contribute to, for example, the increased myocyte contractility characteristic of bladder and erectile dysfunction (i.e. increased Rho kinase activity and decreased K(+) channel function). Of course, there are also some important distinctions in the pathways that modulate contractility in these two cell types (i.e. the contribution of ryanodine-sensitive calcium stores and the nitric oxide/cGMP pathways). This report highlights some of these similarities and distinctions in the hope that it will encourage scientific discourse and research activity in this area, eventually leading to an improved quality of life for those millions of individuals that are afflicted with bladder and erectile dysfunction
    corecore