32 research outputs found

    Pan-cancer analysis of whole genomes

    Get PDF
    Cancer is driven by genetic change, and the advent of massively parallel sequencing has enabled systematic documentation of this variation at the whole-genome scale(1-3). Here we report the integrative analysis of 2,658 whole-cancer genomes and their matching normal tissues across 38 tumour types from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). We describe the generation of the PCAWG resource, facilitated by international data sharing using compute clouds. On average, cancer genomes contained 4-5 driver mutations when combining coding and non-coding genomic elements; however, in around 5% of cases no drivers were identified, suggesting that cancer driver discovery is not yet complete. Chromothripsis, in which many clustered structural variants arise in a single catastrophic event, is frequently an early event in tumour evolution; in acral melanoma, for example, these events precede most somatic point mutations and affect several cancer-associated genes simultaneously. Cancers with abnormal telomere maintenance often originate from tissues with low replicative activity and show several mechanisms of preventing telomere attrition to critical levels. Common and rare germline variants affect patterns of somatic mutation, including point mutations, structural variants and somatic retrotransposition. A collection of papers from the PCAWG Consortium describes non-coding mutations that drive cancer beyond those in the TERT promoter(4); identifies new signatures of mutational processes that cause base substitutions, small insertions and deletions and structural variation(5,6); analyses timings and patterns of tumour evolution(7); describes the diverse transcriptional consequences of somatic mutation on splicing, expression levels, fusion genes and promoter activity(8,9); and evaluates a range of more-specialized features of cancer genomes(8,10-18).Peer reviewe

    Retrospective evaluation of whole exome and genome mutation calls in 746 cancer samples

    No full text
    Funder: NCI U24CA211006Abstract: The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) curated consensus somatic mutation calls using whole exome sequencing (WES) and whole genome sequencing (WGS), respectively. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, which aggregated whole genome sequencing data from 2,658 cancers across 38 tumour types, we compare WES and WGS side-by-side from 746 TCGA samples, finding that ~80% of mutations overlap in covered exonic regions. We estimate that low variant allele fraction (VAF < 15%) and clonal heterogeneity contribute up to 68% of private WGS mutations and 71% of private WES mutations. We observe that ~30% of private WGS mutations trace to mutations identified by a single variant caller in WES consensus efforts. WGS captures both ~50% more variation in exonic regions and un-observed mutations in loci with variable GC-content. Together, our analysis highlights technological divergences between two reproducible somatic variant detection efforts

    Amine biosynthesis in Lathyrus sativus seedlings

    No full text
    The biosynthesis of certain amines in Lathyrus sativus seedlings was studied in isolated shoots; cotyledons. In shoots; arginine was about 4 times more efficient than ornithine for the synthesis of agmatine; putrescine; spermidine; spermine. Isotope dilution experiments; the changes in specific activities of the 4 amines with time when 14C-arginine served as the precursor; indicated that putrescine; the polyamines were formed mainly from arginine; via agmatine. Similar experiments showed that cadaverine was formed at least in part from homoarginine; though lysine was ca 4 times more effective as a precursor. The pattern of changes in specific activity of homoagmatine; cadaverine with time when 14C-homoarginine served as the precursor support the conclusion that homoarginine; arginine follow analogous metabolic routes in the biosynthesis of putrescine; cadaverine respectively

    Homoagmatine from Lathyrus sativus seedlings

    No full text
    A new guanidino amine has been isolated from Lathyrus sativus seedlings and chararterized as homoagmatine on the basis of various physico-chemical criteria including IR spectrum and comparison with that chemically synthesized. Homoagmatine is accumulated in the embryos axis while its precursor, homoarginine, is lost from the cotyledons. However, there was a progressive increase in homoarginine content of the embryo axis during development. Since the amine content of the whole seedlings corresponded to nearly 20–25 % of net decrease in homoarginine levels, it is concluded that the catabolism of homoarginine through homoagmatine represents a major pathway of metabolism of the arnino acid

    Amine levels in Lathyrus sativus seedlings during development

    No full text
    In growing Lathyrus sativus seedlings, the levels of DNA, RNA and protein markedly decreased in the cotyledons and progressively increased in the embryo-axis. In cotyledons, spermidine and spermine contents were substantially reduced while those of agmatine and putrescine were sharply increased. By contrast the embryo-axis progressively accumulated relatively larger amounts of agmatine, homoagmatine. putrescine, cadaverine, spermidine and spermine in parallel with similar changes in its DNA, RNA and protein content. While the cotyledons contained ca 50% of the total agmatine and putrescine present in the plant embryo by day 10, the embryo-axis, though representing less than 20% of the dry wt, contained 90 and 75% of total cadaverine and homoagmatine respectively of the seedlings. Spermidine and spermine levels of this tissue were also comparatively higher, being of the order of 80 and 50% respectively of the total. The root and shoot portions of the embryo-axis also exhibited a similar relationship between changes in DNA, RNA and protein and all the above amines during development. However, the polyamine content of the shoots was relatively higher than those of the roots during the growth period

    Decarboxylation of homoarginine and lysine by an enzyme from Lathyrus sativus seedlings

    No full text
    Homoarginine decarboxylase has been purified ca 110-fold from Lathyrus sativus seedlings and resolved from arginine decarboxylase by DEAE-Sephadex column chromatography. The enzyme was less active than arginine decarboxylase and was highly labile. This preparation decarboxylated l-lysine in addition to L-homoarginine. The purified enzyme preparation had an absolute requirement for exogenous Mn2+ or Fe2+ for both the enzyme activities. The pH and temperature optima for decarboxylation of both homoarginine and lysine were the same viz. 8.4 and 41&#176; respectively. The Km value l-homoarginine was 3.33 mM and for L-lysine was 0.88 mM. Arginine and homoarginine decarboxylases appear to be different and separable entities having different physico-chemical characteristics, despite the fact that their respective guanido amino acid substrates undergo similar metabolic conversion to guanido- and diamines in this plant system

    Arginine Decarboxylase from Lathyrus sativus Seedlings Purification and Properties

    No full text
    Arginine decarboxylase which makes its appearance in Lathyrus sativus seedlings after 24 h of seed germination reaches its highest level around 5–7 days, the cotyledons containing about 60% of the total activity in the seedlings at day 5. The cytosol enzyme was purified 977-fold from whole seedlings by steps involving manganese chloride treatment, ammonium sulphate and acetone fractionations, positive adsorption on alumina C-γ gel, DEAE-Sephadex chromatography followed by preparative disc gel electrophoresis. The enzyme was shown to be homogeneous by electrophoretic and immunological criteria, had a molecular weight of 220000 and appears to be a hexamer with identical subunits. The optimal pH and temperature for the enzyme activity were 8.5 and 45 °C respectively. The enzyme follows typical Michaelis-Menten kinetics with a Km value of 1.73 mM for arginine. Though Mn2+ at lower concentrations stimulated the enzyme activity, there was no dependence of the enzyme on any metal for the activity. The arginine decarboxylase of L. sativus is a sulfhydryl enzyme. The data on co-factor requirement, inhibition by carbonyl reagents, reducing agents and pyridoxal phosphate inhibitors, and a partial reversal by pyridoxal phosphate of inhibition by pyridoxal · HCl suggests that pyridoxal 5'-phosphate is involved as a co-factor for the enzyme. The enzyme activity was inhibited competitively by various amines including the product agmatine. Highest inhibition was obtained with spermine and arcain. The substrate analogue, l-canavanine, homologue l-homoarginine and other basic amino acids like l-lysine and l-ornithine inhibited the enzyme activity competitively, homoarginine being the most effective in this respect

    Diamine oxidase of Lathyrus sativus seedlings

    No full text
    A diamine oxidase has been purified (ca 40-fold) from 5-day old etiolated seedlings of L. sativus by MnCl2 treatment, (NH4)2SO4 and Me2CO fractionations, positive adsorption on alumina C&#947; -gel followed by column chromatography on DEAE-Sephadex. This cytosol enzyme oxidatively deaminates a number of aliphatic and aryl alkylamines but not histamine. NSD-1055, semicarbazide and other carbonyl reagents, &#945; ,&#945; 'bipyridyl, 1,10-phenanthroline and 8-hydroxyquinoline inhibit the enzyme. Pargyline, SKF trans-385, atabrine were without effect on the enzyme
    corecore