140 research outputs found

    Cost-effectiveness comparison between palpation- and ultrasound-guided thyroid fine-needle aspiration biopsies

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The aim of this study is to perform a cost-effectiveness comparison between palpation-guided thyroid fine-needle aspiration biopsies (P-FNA) and ultrasound-guided thyroid FNA biopsies (USG-FNA).</p> <p>Methods</p> <p>Each nodule was considered as a case. Diagnostic steps were history and physical examination, TSH measurement, Tc<sup>99m </sup>thyroid scintigraphy for nodules with a low TSH level, initial P-FNA versus initial USG-FNA, repeat USG-FNA for nodules with initial inadequate P-FNA or USG-FNA, hemithyroidectomy for inadequate repeat USG-FNA. American Thyroid Association thyroid nodule management guidelines were simulated in estimating the cost of P-FNA strategy. American Association of Clinical Endocrinologists guidelines were simulated for USG-FNA strategy. Total costs were estimated by adding the cost of each diagnostic step to reach a diagnosis for 100 nodules. Strategy cost was found by dividing the total cost to 100. Incremental cost-effectiveness ratio (ICER) was calculated by dividing the difference between strategy cost of USG-FNA and P-FNA to the difference between accuracy of USG-FNA and P-FNA. A positive ICER indicates more and a negative ICER indicates less expense to achieve one more additional accurate diagnosis of thyroid cancer for USG-FNA.</p> <p>Results</p> <p>Seventy-eight P-FNAs and 190 USG-FNAs were performed between April 2003 and May 2008. There were no differences in age, gender, thyroid function, frequency of multinodular goiter, nodule location and diameter (median nodule diameter: 18.4 mm in P-FNA and 17.0 mm in USG-FNA) between groups. Cytology results in P-FNA versus USG-FNA groups were as follows: benign 49% versus 62% (p = 0.04), inadequate 42% versus 29% (p = 0.03), malignant 3% (p = 1.00) and indeterminate 6% (p = 0.78) for both. Eleven nodules from P-FNA and 18 from USG-FNA group underwent surgery. The accuracy of P-FNA was 0.64 and USG-FNA 0.72. Unit cost of P-FNA was 148 Euros and USG-FNA 226 Euros. The cost of P-FNA strategy was 534 Euros and USG-FNA strategy 523 Euros. Strategy cost includes the expense of repeat USG-FNA for initial inadequate FNAs and surgery for repeat inadequate USG-FNAs. ICER was -138 Euros.</p> <p>Conclusion</p> <p>Universal application of USG-FNA for all thyroid nodules is cost-effective and saves 138 Euros per additional accurate diagnosis of benign versus malignant thyroid nodular disease.</p> <p>Trial registration</p> <p>ClinicalTrials.gov, NCT00571090</p

    Depression and sickness behavior are Janus-faced responses to shared inflammatory pathways

    Get PDF
    It is of considerable translational importance whether depression is a form or a consequence of sickness behavior. Sickness behavior is a behavioral complex induced by infections and immune trauma and mediated by pro-inflammatory cytokines. It is an adaptive response that enhances recovery by conserving energy to combat acute inflammation. There are considerable phenomenological similarities between sickness behavior and depression, for example, behavioral inhibition, anorexia and weight loss, and melancholic (anhedonia), physio-somatic (fatigue, hyperalgesia, malaise), anxiety and neurocognitive symptoms. In clinical depression, however, a transition occurs to sensitization of immuno-inflammatory pathways, progressive damage by oxidative and nitrosative stress to lipids, proteins, and DNA, and autoimmune responses directed against self-epitopes. The latter mechanisms are the substrate of a neuroprogressive process, whereby multiple depressive episodes cause neural tissue damage and consequent functional and cognitive sequelae. Thus, shared immuno-inflammatory pathways underpin the physiology of sickness behavior and the pathophysiology of clinical depression explaining their partially overlapping phenomenology. Inflammation may provoke a Janus-faced response with a good, acute side, generating protective inflammation through sickness behavior and a bad, chronic side, for example, clinical depression, a lifelong disorder with positive feedback loops between (neuro)inflammation and (neuro)degenerative processes following less well defined triggers

    Pan-cancer analysis of whole genomes

    Get PDF
    Cancer is driven by genetic change, and the advent of massively parallel sequencing has enabled systematic documentation of this variation at the whole-genome scale(1-3). Here we report the integrative analysis of 2,658 whole-cancer genomes and their matching normal tissues across 38 tumour types from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). We describe the generation of the PCAWG resource, facilitated by international data sharing using compute clouds. On average, cancer genomes contained 4-5 driver mutations when combining coding and non-coding genomic elements; however, in around 5% of cases no drivers were identified, suggesting that cancer driver discovery is not yet complete. Chromothripsis, in which many clustered structural variants arise in a single catastrophic event, is frequently an early event in tumour evolution; in acral melanoma, for example, these events precede most somatic point mutations and affect several cancer-associated genes simultaneously. Cancers with abnormal telomere maintenance often originate from tissues with low replicative activity and show several mechanisms of preventing telomere attrition to critical levels. Common and rare germline variants affect patterns of somatic mutation, including point mutations, structural variants and somatic retrotransposition. A collection of papers from the PCAWG Consortium describes non-coding mutations that drive cancer beyond those in the TERT promoter(4); identifies new signatures of mutational processes that cause base substitutions, small insertions and deletions and structural variation(5,6); analyses timings and patterns of tumour evolution(7); describes the diverse transcriptional consequences of somatic mutation on splicing, expression levels, fusion genes and promoter activity(8,9); and evaluates a range of more-specialized features of cancer genomes(8,10-18).Peer reviewe
    corecore